一、略
二、
对于连续线性定常系统,能控性和能达性是等价的。设连续线性定常系统为
x
˙
(
t
)
=
A
x
(
t
)
+
B
u
(
t
)
\dot{x}(t)=Ax(t)+Bu(t)
x˙(t)=Ax(t)+Bu(t)
系统的状态响应为
x
(
t
)
=
e
A
(
t
−
t
0
)
x
(
t
0
)
+
∫
t
0
t
e
A
(
t
−
τ
)
B
u
(
τ
)
d
τ
x(t)=e^{A(t-t_0)}x(t_0)+\int^t_{t_0}e^{A(t-\tau)}Bu(\tau)\text{d}\tau
x(t)=eA(t−t0)x(t0)+∫t0teA(t−τ)Bu(τ)dτ
若
x
(
t
0
)
x(t_0)
x(t0)是该系统的一个能控状态,则存在
t
1
⩾
t
0
t_1\geqslant t_0
t1⩾t0和一个容许控制
u
α
u_{\alpha}
uα,使得
0
=
e
A
(
t
1
−
t
0
)
x
(
t
0
)
+
∫
t
0
t
1
e
A
(
t
1
−
τ
)
B
u
α
(
τ
)
d
τ
0=e^{A(t_1-t_0)}x(t_0)+\int^{t_1}_{t_0}e^{A(t_1-\tau)}Bu_{\alpha}(\tau)\text{d}\tau
0=eA(t1−t0)x(t0)+∫t0t1eA(t1−τ)Buα(τ)dτ
得到能控状态表达式
x
(
t
0
)
=
−
e
−
A
(
t
1
−
t
0
)
∫
t
0
t
1
e
A
(
t
1
−
τ
)
B
u
α
(
τ
)
d
τ
x(t_0)=-e^{-A(t_1-t_0)}\int^{t_1}_{t_0}e^{A(t_1-\tau)}Bu_{\alpha}(\tau)\text{d}\tau
x(t0)=−e−A(t1−t0)∫t0t1eA(t1−τ)Buα(τ)dτ
该式等价于能达状态表达式
x
(
t
0
)
=
∫
t
0
t
1
e
A
(
t
1
−
τ
)
B
(
−
e
−
A
(
t
1
−
t
0
)
u
α
(
τ
)
)
d
τ
x(t_0)=\int^{t_1}_{t_0}e^{A(t_1-\tau)}B(-e^{-A(t_1-t_0)}u_{\alpha}(\tau)\text){d}\tau
x(t0)=∫t0t1eA(t1−τ)B(−e−A(t1−t0)uα(τ))dτ
从上式可以看出,取控制律
u
(
t
)
=
−
e
−
A
(
t
1
−
t
0
)
u
α
(
τ
)
u(t)=-e^{-A(t_1-t_0)}u_{\alpha}(\tau)
u(t)=−e−A(t1−t0)uα(τ)
可以将状态从原点转移到
x
0
x_0
x0,即
x
0
x_0
x0也是一个能达状态。从而连续线性定常系统的能空性和能达性是等价的。对于离散系统和时变系统,严格地说能控性和能达性是不等价的。可以出现这样的情况,系统是不完全能控的,但却是完全能达的。
设线性时变离散系统为
x
(
k
+
1
)
=
G
(
k
)
x
(
k
)
+
H
(
k
)
u
(
k
)
,
k
∈
J
k
x(k+1)=G(k)x(k)+H(k)u(k),k\in J_k
x(k+1)=G(k)x(k)+H(k)u(k),k∈Jk
其中,
J
k
J_k
Jk为离散时间定义区间。考虑能控性,存在
u
(
k
)
u(k)
u(k)满足
0
=
x
(
l
)
=
Φ
(
l
,
h
)
x
0
+
∑
k
=
h
l
−
1
Φ
(
l
,
k
+
1
)
H
(
k
)
u
(
k
)
0=x(l)=\Phi(l,h)x_0+\displaystyle\sum_{k=h}^{l-1}\Phi(l,k+1)H(k)u(k)
0=x(l)=Φ(l,h)x0+k=h∑l−1Φ(l,k+1)H(k)u(k)
由此可导出
Φ
(
l
,
h
)
x
0
=
−
∑
k
=
h
l
−
1
Φ
(
l
,
k
+
1
)
H
(
k
)
u
(
k
)
\Phi(l,h)x_0=-\displaystyle\sum_{k=h}^{l-1}\Phi(l,k+1)H(k)u(k)
Φ(l,h)x0=−k=h∑l−1Φ(l,k+1)H(k)u(k)
再考虑能达性,存在
u
(
k
)
u(k)
u(k)满足
x
(
l
)
=
∑
k
=
h
l
−
1
Φ
(
l
,
k
+
1
)
H
(
k
)
u
(
k
)
x(l)=\displaystyle\sum_{k=h}^{l-1}\Phi(l,k+1)H(k)u(k)
x(l)=k=h∑l−1Φ(l,k+1)H(k)u(k)
将上述两式中的控制取为相同的
u
(
k
)
u(k)
u(k),那么由此可得
x
(
l
)
=
−
Φ
(
l
,
h
)
x
0
x(l)=-\Phi(l,h)x_0
x(l)=−Φ(l,h)x0
注意到状态转移矩阵
Φ
(
l
,
h
)
=
G
(
l
−
1
)
G
(
l
−
2
)
⋯
G
(
h
)
=
∏
k
=
l
−
1
h
G
(
k
)
\Phi(l,h)=G(l-1)G(l-2)\cdots G(h)=\prod^h_{k=l-1}G(k)
Φ(l,h)=G(l−1)G(l−2)⋯G(h)=k=l−1∏hG(k)
将上式代入可导出
x
(
l
)
=
−
[
∏
k
=
l
−
1
h
G
(
k
)
]
x
0
x(l)=-\left[\prod^h_{k=l-1}G(k)\right]x_0
x(l)=−[k=l−1∏hG(k)]x0
这表明,当且仅当
G
(
k
)
G(k)
G(k)对所有
k
∈
[
h
,
l
−
1
]
k\in [h,l-1]
k∈[h,l−1]为非奇异时,对任一能控的
x
0
x_0
x0必对应于唯一的能达状态
x
(
l
)
x(l)
x(l),而对任一能达的
x
(
l
)
x(l)
x(l)也必对应唯一的能控状态
x
0
x_0
x0,也即系统的能控和能达为等价。同样,对于线性定常离散时间系统
x
(
k
+
1
)
=
G
x
(
k
)
+
H
u
(
k
)
,
k
=
0
,
1
,
⋯
x(k+1)=Gx(k)+Hu(k),k=0,1,\cdots
x(k+1)=Gx(k)+Hu(k),k=0,1,⋯
能控性和能达性为等价的充分必要条件是系统矩阵
G
G
G为非奇异。如果线性时变离散时间系统和线性定常离散时间系统是相应连续时间系统的时间离散化模型,则其能控性和能达性必是等价的。
三、
利用
C
a
y
l
e
y
−
H
a
m
i
l
t
o
n
Cayley-Hamilton
Cayley−Hamilton定理,可以将
e
A
t
e^{At}
eAt以有限多项式表示。根据
C
a
y
l
e
y
−
H
a
m
i
l
t
o
n
Cayley-Hamilton
Cayley−Hamilton定理,得
A
n
=
−
(
a
n
−
1
A
n
−
1
+
⋯
+
a
1
A
+
a
0
I
)
A^n=-(a_{n-1}A^{n-1}+\cdots+a_1A+ a_0I)
An=−(an−1An−1+⋯+a1A+a0I)
上式表明,
A
n
A^n
An是
A
n
−
1
,
⋯
,
A
,
I
A^{n-1},\cdots,A,I
An−1,⋯,A,I的线性组合,而
A
n
+
1
=
A
n
⋅
A
=
−
(
a
n
−
1
A
n
−
1
+
⋯
+
a
1
A
+
a
0
I
)
A
=
(
a
n
−
1
2
−
a
n
−
2
)
A
n
−
1
+
(
a
n
−
1
a
n
−
2
−
a
n
−
3
)
A
n
−
2
+
⋯
+
(
a
n
−
1
a
1
−
a
0
)
A
+
a
n
−
1
a
0
I
\begin{aligned} A{n+1}&=A^n\cdot A \\ &=-(a_{n-1}A^{n-1}+\cdots+a_1A+a_0I)A \\ &=(a^2_{n-1}-a_{n-2})A^{n-1}+(a_{n-1}a_{n-2}-a_{n-3})A^{n-2}+\cdots+(a_{n-1}a_1-a_0)A+a_{n-1}a_0I \end{aligned}
An+1=An⋅A=−(an−1An−1+⋯+a1A+a0I)A=(an−12−an−2)An−1+(an−1an−2−an−3)An−2+⋯+(an−1a1−a0)A+an−1a0I
上式表明,
A
n
+
1
A^{n+1}
An+1也可以用
A
n
,
⋯
,
A
,
I
A^n,\cdots,A,I
An,⋯,A,I的线性组合来表示。以此类推,所有高于
(
n
−
1
)
(n-1)
(n−1)次的乘幂项
A
n
,
A
n
+
1
,
A
n
+
2
A^n,A^{n+1},A^{n+2}
An,An+1,An+2都可以用
A
n
−
1
,
A
n
−
2
,
A
n
−
3
,
⋯
,
A
,
I
A^{n-1},A^{n-2},A^{n-3},\cdots,A,I
An−1,An−2,An−3,⋯,A,I的线性组合来表示,将其代入,便可以消去
e
A
t
e^{At}
eAt中高于
A
n
−
1
A^{n-1}
An−1的幂次项。结果
e
A
t
e^{At}
eAt就化成一个
A
A
A的最高次幂为
n
−
1
n-1
n−1的
n
n
n项幂级数的形式,即
Φ
(
t
)
=
e
A
t
=
I
+
A
t
+
1
2
!
A
2
t
2
+
⋯
+
1
n
!
A
n
+
1
t
n
+
1
+
⋯
=
a
0
(
t
)
I
+
a
1
(
t
)
A
+
⋯
+
a
n
−
1
(
t
)
A
n
−
1
\begin{aligned} \Phi(t)&=e^{At} \\ &=I+At+\frac{1}{2!}A^2t^2+\cdots+\frac{1}{n!}A^{n+1}t^{n+1}+\cdots \\ &=a_0(t)I+a_1(t)A+\cdots+a_{n-1}(t)A^{n-1} \end{aligned}
Φ(t)=eAt=I+At+2!1A2t2+⋯+n!1An+1tn+1+⋯=a0(t)I+a1(t)A+⋯+an−1(t)An−1
二阶线性定常系统
A
A
A有两个不同的实特征根
λ
1
\lambda_1
λ1和
λ
2
\lambda_2
λ2,则
[
α
0
(
t
)
α
1
(
t
)
]
=
[
1
λ
1
1
λ
2
]
−
1
[
e
λ
1
t
e
λ
2
t
]
\begin{bmatrix} \alpha_0(t) \\ \alpha_1(t) \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 \\ 1 & \lambda_2 \end{bmatrix}^{-1} \begin{bmatrix} e^{\lambda_1t} \\ e^{\lambda_2t} \end{bmatrix}
[α0(t)α1(t)]=[11λ1λ2]−1[eλ1teλ2t]
即
e
λ
1
t
=
α
0
(
t
)
+
λ
1
α
1
(
t
)
,
e
λ
2
t
=
α
0
(
t
)
+
λ
2
α
1
(
t
)
e^{\lambda_1t}=\alpha_0(t)+\lambda_1\alpha_1(t),\quad e^{\lambda_2t}=\alpha_0(t)+\lambda_2\alpha_1(t)
eλ1t=α0(t)+λ1α1(t),eλ2t=α0(t)+λ2α1(t)
四、
(1)
存在状态点
x
e
x_e
xe,当系统运动到该点时,系统状态各分量维持平衡,各分量不再随时间变化,该点称为系统的平衡点。若已知状态方程,令
x
˙
=
0
\dot{x}=0
x˙=0所求得的解
x
x
x,便是系统的平衡点。
令
x
˙
=
0
\dot{x}=0
x˙=0,系统
(
I
)
(\text{I})
(I)的平衡点为
x
1
=
0
,
x
2
=
0
x_1=0,x_2=0
x1=0,x2=0;系统
(
II
)
(\text{II})
(II)的平衡点为
x
1
=
0
,
x
2
=
0
x_1=0,x_2=0
x1=0,x2=0或
x
1
=
0
,
x
2
=
±
1
x_1=0,x_2=\pm1
x1=0,x2=±1
(2)
取正定标量函数
V
(
x
)
=
x
1
2
+
x
2
2
V(x)=x_1^2+x_2^2
V(x)=x12+x22
沿任意轨迹
V
(
x
)
V(x)
V(x)对时间的导数
V
˙
(
t
)
=
2
x
1
x
˙
1
+
2
x
2
x
˙
2
=
2
x
1
x
2
−
2
x
1
x
2
−
2
x
1
2
x
2
2
=
−
2
x
1
2
x
2
2
\begin{aligned} \dot{V}(t)&=2x_1\dot{x}_1+2x_2\dot{x}_2 \\ &=2x_1x_2-2x_1x_2-2x_1^2x_2^2 \\ &=-2x_1^2x_2^2 \end{aligned}
V˙(t)=2x1x˙1+2x2x˙2=2x1x2−2x1x2−2x12x22=−2x12x22
是负定的。这说明
V
(
x
)
V(x)
V(x)沿任意轨迹是连续减小的,因此
V
(
x
)
V(x)
V(x)是一个李雅普诺夫函数。当
∣
∣
x
∣
∣
→
∞
||x||\rightarrow\infin
∣∣x∣∣→∞时
V
(
x
)
→
∞
V(x)\rightarrow\infin
V(x)→∞,所以系统在平衡点处的平衡状态是大范围渐进稳定的。
五、
由基尔霍夫电流定律可得:
{
R
1
(
i
C
(
t
)
+
i
L
(
t
)
)
+
1
C
∫
i
C
(
t
)
d
t
=
u
i
(
t
)
L
d
i
L
(
t
)
dt
+
u
0
(
t
)
=
1
C
∫
i
C
(
t
)
d
t
u
0
(
t
)
=
R
2
i
L
(
t
)
\left\{\begin{array}{l} R_1(i_C(t)+i_L(t))+\cfrac{1}{C}\displaystyle{\int} i_C(t)\text{d}t=u_i(t) \\ L\cfrac{\text{d}i_L(t)}{\text{dt}}+u_0(t)=\cfrac{1}{C}\displaystyle{\int} i_C(t)\text{d}t \\ u_0(t)=R_2i_L(t) \end{array}\right.
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧R1(iC(t)+iL(t))+C1∫iC(t)dt=ui(t)LdtdiL(t)+u0(t)=C1∫iC(t)dtu0(t)=R2iL(t)
(1)
状态变量是能够完全描述系统行为的最小变量组的每一个变量,它们之间相互独立,独立变量的个数解释系统微分方程的阶次。由
u
0
(
t
)
=
R
2
i
L
u_0(t)=R_2i_L
u0(t)=R2iL可知,
u
0
(
t
)
u_0(t)
u0(t)和
i
L
(
t
)
i_L(t)
iL(t)线性相关,且根据系统的微分方程的阶次可知,需要两个独立的状态变量,故选取这两个变量无法建立状态空间方程。
(2)
两个储能元件的变量独立,可建立状态空间方程。将原微分方程组化简,得到
{
d
u
c
(
t
)
d
t
=
−
1
R
1
C
u
c
(
t
)
−
1
C
i
L
(
t
)
+
1
R
1
C
u
i
d
i
L
(
t
)
dt
=
1
L
u
c
(
t
)
−
R
2
L
i
L
(
t
)
u
0
(
t
)
=
R
2
i
L
(
t
)
\left\{\begin{array}{l} \cfrac{\text{d}u_c(t)}{\text{d}t}=-\cfrac{1}{R_1C}u_c(t)-\cfrac{1}{C}i_L(t)+\cfrac{1}{R_1C}u_i \\ \cfrac{\text{d}i_L(t)}{\text{dt}}=\cfrac{1}{L}u_c(t)-\cfrac{R_2}{L}i_L(t) \\ u_0(t)=R_2i_L(t) \end{array}\right.
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧dtduc(t)=−R1C1uc(t)−C1iL(t)+R1C1uidtdiL(t)=L1uc(t)−LR2iL(t)u0(t)=R2iL(t)
列写出系统的状态空间表达式
{
x
˙
(
t
)
=
[
−
1
R
1
C
−
1
C
1
L
−
R
2
L
]
x
(
t
)
+
[
−
1
R
1
C
0
]
u
i
u
o
(
t
)
=
[
0
R
2
]
u
o
\left\{\begin{array}{l} \dot{x}(t)= \begin{bmatrix} -\cfrac{1}{R_1C} & -\cfrac{1}{C} \\ \cfrac{1}{L} & -\cfrac{R_2}{L} \end{bmatrix} x(t) + \begin{bmatrix} -\cfrac{1}{R_1C} \\ 0 \end{bmatrix} u_i \\ u_o(t) =\begin{bmatrix} 0 & R_2 \end{bmatrix} u_o \end{array}\right.
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x˙(t)=⎣⎢⎢⎡−R1C1L1−C1−LR2⎦⎥⎥⎤x(t)+⎣⎡−R1C10⎦⎤uiuo(t)=[0R2]uo
将
R
1
=
1
Ω
、
R
2
=
2
Ω
、
C
=
1
F
、
L
=
0.5
H
R_1=1\Omega、R_2=2\Omega、C=1F、L=0.5H
R1=1Ω、R2=2Ω、C=1F、L=0.5H代入上式
{
x
˙
(
t
)
=
[
−
1
−
1
2
−
4
]
x
(
t
)
+
[
−
1
0
]
u
i
u
o
(
t
)
=
[
0
2
]
u
o
\left\{\begin{array}{l} \dot{x}(t)= \begin{bmatrix} -1 & -1 \\ 2 & -4 \end{bmatrix} x(t) + \begin{bmatrix} -1 \\ 0 \end{bmatrix} u_i \\ u_o(t) =\begin{bmatrix} 0 & 2 \end{bmatrix} u_o \end{array}\right.
⎩⎨⎧x˙(t)=[−12−1−4]x(t)+[−10]uiuo(t)=[02]uo
求
A
A
A的特征根
∣
λ
I
−
A
∣
=
∣
λ
+
1
1
−
2
λ
+
4
∣
=
(
λ
+
2
)
(
λ
+
3
)
=
0
|\lambda I-A|= \begin{vmatrix} \lambda+1 & 1 \\ -2 & \lambda+4 \end{vmatrix}=(\lambda+2)(\lambda+3)=0
∣λI−A∣=∣∣∣∣λ+1−21λ+4∣∣∣∣=(λ+2)(λ+3)=0
有两个不同的特征根
λ
1
=
−
2
、
λ
2
=
−
3
\lambda_1=-2、\lambda_2=-3
λ1=−2、λ2=−3,由
C
a
y
l
e
y
−
H
a
m
i
l
t
o
n
Cayley-Hamilton
Cayley−Hamilton定理
[
α
0
(
t
)
α
1
(
t
)
]
=
[
1
λ
1
1
λ
2
]
−
1
[
e
λ
1
t
e
λ
2
t
]
=
[
1
−
2
1
−
3
]
−
1
[
e
−
2
t
e
−
3
t
]
=
[
3
−
2
1
−
1
]
[
e
−
2
t
e
−
3
t
]
=
[
3
e
−
2
t
−
2
e
−
3
t
e
−
2
t
−
e
−
3
t
]
\begin{bmatrix} \alpha_0(t) \\ \alpha_1(t) \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 \\ 1 & \lambda_2 \end{bmatrix}^{-1} \begin{bmatrix} e^{\lambda_1t} \\ e^{\lambda_2t} \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}^{-1} \begin{bmatrix} e^{-2t} \\ e^{-3t} \end{bmatrix}= \begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{-2t} \\ e^{-3t} \end{bmatrix}= \begin{bmatrix} 3e^{-2t}-2e^{-3t} \\ e^{-2t}-e^{-3t} \end{bmatrix}
[α0(t)α1(t)]=[11λ1λ2]−1[eλ1teλ2t]=[11−2−3]−1[e−2te−3t]=[31−2−1][e−2te−3t]=[3e−2t−2e−3te−2t−e−3t]
系统的状态转移矩阵为
Φ
(
t
)
=
a
0
I
+
a
1
A
=
(
3
e
−
2
t
−
2
e
−
3
t
)
[
1
0
0
1
]
+
(
e
−
2
t
−
e
−
3
t
)
[
−
1
−
1
2
−
4
]
=
[
2
e
−
2
t
−
e
−
3
t
−
e
−
2
t
+
e
−
3
t
2
e
−
2
t
−
2
e
−
3
t
−
e
−
2
t
+
2
e
−
3
t
]
\Phi(t)=a_0I+a_1A=(3e^{-2t}-2e^{-3t}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}+ (e^{-2t}-e^{-3t}) \begin{bmatrix} -1 & -1 \\ 2 & -4 \end{bmatrix}= \begin{bmatrix} 2e^{-2t}-e^{-3t} & -e^{-2t}+e^{-3t} \\ 2e^{-2t}-2e^{-3t} & -e^{-2t}+2e^{-3t} \end{bmatrix}
Φ(t)=a0I+a1A=(3e−2t−2e−3t)[1001]+(e−2t−e−3t)[−12−1−4]=[2e−2t−e−3t2e−2t−2e−3t−e−2t+e−3t−e−2t+2e−3t]
系统的单位阶跃响应为
x
(
t
)
=
Φ
(
t
)
x
(
0
)
+
∫
0
t
Φ
(
t
−
τ
)
B
u
(
τ
)
d
τ
=
[
e
−
3
t
2
e
−
3
t
]
+
[
2
3
+
e
−
2
t
−
1
3
e
−
3
t
1
3
+
e
−
2
t
−
2
3
e
−
3
t
]
=
[
2
3
+
e
−
2
t
+
2
3
e
−
3
t
1
3
+
e
−
2
t
+
4
3
e
−
3
t
]
\begin{aligned} x(t)&=\Phi(t)x(0)+\int^t_0\Phi(t-\tau)Bu(\tau)\text{d}\tau \\ &= \begin{bmatrix} e^{-3t} \\ 2e^{-3t} \end{bmatrix}+ \begin{bmatrix} \cfrac{2}{3}+e^{-2t}-\cfrac{1}{3}e^{-3t} \\ \cfrac{1}{3}+e^{-2t}-\cfrac{2}{3}e^{-3t} \end{bmatrix} \\ &= \begin{bmatrix} \cfrac{2}{3}+e^{-2t}+\cfrac{2}{3}e^{-3t} \\ \cfrac{1}{3}+e^{-2t}+\cfrac{4}{3}e^{-3t} \end{bmatrix} \end{aligned}
x(t)=Φ(t)x(0)+∫0tΦ(t−τ)Bu(τ)dτ=[e−3t2e−3t]+⎣⎢⎡32+e−2t−31e−3t31+e−2t−32e−3t⎦⎥⎤=⎣⎢⎡32+e−2t+32e−3t31+e−2t+34e−3t⎦⎥⎤
六、
由条件(2)可知,该系统为
I
\text{I}
I型系统,
G
(
s
)
G(s)
G(s)可以改写为
G
(
s
)
=
k
s
B
(
s
)
G(s)=\cfrac{k}{sB(s)}
G(s)=sB(s)k
则闭环传递函数为
Φ
(
s
)
=
k
s
B
(
s
)
+
k
\Phi(s)=\cfrac{k}{sB(s)+k}
Φ(s)=sB(s)+kk
对比闭环特征方程可得
k
=
10
,
B
(
s
)
=
s
2
+
4
s
+
6
k=10,\quad B(s)=s^2+4s+6
k=10,B(s)=s2+4s+6
系统的开环传递函数为
G
(
s
)
=
10
s
(
s
2
+
4
s
+
6
)
G(s)=\cfrac{10}{s(s^2+4s+6)}
G(s)=s(s2+4s+6)10
七、
系统的开环脉冲传递函数
G
(
z
)
=
Z
[
e
−
T
s
s
]
⋅
Z
[
0.01
K
s
(
s
+
0.01
)
]
=
z
−
1
⋅
(
1
−
e
−
0.1
)
k
z
(
z
−
1
)
(
z
−
e
−
0.1
)
=
0.9
k
(
z
−
1
)
(
z
−
0.1
)
\begin{aligned} G(z)&=\mathscr{Z}[e^{-T_ss}]\cdot\mathscr{Z}\left[\cfrac{0.01K}{s(s+0.01)}\right] \\ &=z^{-1}\cdot \cfrac{(1-e^{-0.1})kz}{(z-1)(z-e^{-0.1})} \\ &=\cfrac{0.9k}{(z-1)(z-0.1)} \end{aligned}
G(z)=Z[e−Tss]⋅Z[s(s+0.01)0.01K]=z−1⋅(z−1)(z−e−0.1)(1−e−0.1)kz=(z−1)(z−0.1)0.9k
闭环特征方程
D
(
z
)
=
z
2
−
1.1
z
+
0.1
+
0.9
k
=
0
D(z)=z^2-1.1z+0.1+0.9k=0
D(z)=z2−1.1z+0.1+0.9k=0
令
z
=
w
+
1
w
−
1
z=\cfrac{w+1}{w-1}
z=w−1w+1
(
1.1
+
0.9
k
)
w
2
+
(
0.7
−
1.8
k
)
w
+
2.2
+
0.9
k
=
0
(1.1+0.9k)w^2+(0.7-1.8k)w+2.2+0.9k=0
(1.1+0.9k)w2+(0.7−1.8k)w+2.2+0.9k=0
列劳斯表
w
2
1.1
+
0.9
k
2.2
+
0.9
k
w
1
0.7
−
1.8
k
w
0
2.2
+
0.9
k
\begin{matrix} w^2 & 1.1+0.9k & 2.2+0.9k \\ w^1 & 0.7-1.8k & \\ w^0 & 2.2+0.9k & & \\ \end{matrix}
w2w1w01.1+0.9k0.7−1.8k2.2+0.9k2.2+0.9k
要使系统稳定,劳斯表第一列恒大于零,则有
0
<
k
<
0.3
0<k<0.3
0<k<0.3
八、
系统的开环传递函数
G
(
s
)
=
a
s
s
2
+
16
G(s)=\frac{as}{s^2+16}
G(s)=s2+16as
系统的根轨迹方程
a
s
s
2
+
16
=
−
1
a\frac{s}{s^2+16}=-1
as2+16s=−1
①
n
=
2
n=2
n=2,
m
=
1
m=1
m=1,根轨迹有
2
2
2条分支
②根轨迹的起点:
P
1
,
2
=
±
j
4
P_{1,2}=\pm j4
P1,2=±j4
③实轴上的根轨迹:
(
−
∞
,
0
]
(-\infin,0]
(−∞,0]
④根轨迹的汇合点
1
d
+
j
4
+
1
d
−
j
4
=
1
d
⟹
d
2
=
16
d
1
=
−
4
(
汇
合
点
)
,
d
2
=
−
4
(
舍
去
)
\cfrac{1}{d+j4}+\cfrac{1}{d-j4}=\cfrac{1}{d} \implies d^2=16\\ d_1=-4(汇合点),\ d_2=-4(舍去)
d+j41+d−j41=d1⟹d2=16d1=−4(汇合点), d2=−4(舍去)
综上
由根轨迹图可知,当
a
>
0
a>0
a>0时,开环系统稳定。将点
(
−
3
,
j
)
(-\sqrt3,j)
(−3,j)代入闭环特征方程中
(
−
3
+
j
)
2
+
a
(
−
3
+
j
)
+
16
=
(
18
−
3
a
)
+
j
(
a
−
2
3
)
=
0
(-\sqrt3+j)^2+a(-\sqrt3+j)+16=(18-\sqrt3a)+j(a-2\sqrt3)=0
(−3+j)2+a(−3+j)+16=(18−3a)+j(a−23)=0
a
a
a无解,故该点不在根轨迹。
九、
(1)
饱和非线性特性
(2)
由图可知,
y
(
x
)
y(x)
y(x)为关于
x
x
x的奇函数,故
A
0
=
0
A_0=0
A0=0,
y
(
t
)
y(t)
y(t)为
t
t
t的奇函数,故
A
1
=
0
。
因
为
A_1=0。因为
A1=0。因为y(t)$具有半周期对称,则
B
1
=
1
π
∫
0
2
π
y
(
t
)
sin
ω
d
ω
t
=
4
π
∫
0
π
2
y
(
t
)
sin
ω
d
ω
t
=
4
π
(
∫
0
ψ
k
A
sin
ω
t
sin
ω
t
d
ω
t
+
∫
ψ
π
2
k
a
sin
ω
t
d
ω
t
)
=
2
k
A
π
[
arcsin
a
A
+
a
A
1
−
(
a
A
)
2
]
\begin{aligned} B_1&=\cfrac{1}{\pi}\int^{2\pi}_0y(t)\sin\omega\text{d}\omega t\\ &=\cfrac{4}{\pi}\int^{\frac{\pi}{2}}_0y(t)\sin\omega\text{d}\omega t \\ &=\cfrac{4}{\pi}\left(\int_0^\psi kA\sin\omega t\sin \omega t\text{d}\omega t+\int_\psi^{\frac{\pi}{2}} ka\sin\omega t\text{d}\omega t\right) \\ &=\cfrac{2kA}{\pi}\left[\arcsin\cfrac{a}{A}+\cfrac{a}{A}\sqrt{1-(\cfrac{a}{A})^2}\right] \end{aligned}
B1=π1∫02πy(t)sinωdωt=π4∫02πy(t)sinωdωt=π4(∫0ψkAsinωtsinωtdωt+∫ψ2πkasinωtdωt)=π2kA⎣⎡arcsinAa+Aa1−(Aa)2⎦⎤
该非线性环节的描述函数为
N
(
A
)
=
1
A
(
B
1
+
j
A
1
)
=
2
k
π
[
arcsin
a
A
+
a
A
1
−
(
a
A
)
2
]
,
A
⩾
a
\begin{aligned} N(A)&=\cfrac{1}{A}(B_1+jA_1) \\ &=\cfrac{2k}{\pi}\left[\arcsin\cfrac{a}{A}+\cfrac{a}{A}\sqrt{1-(\cfrac{a}{A})^2}\right],\quad A\geqslant a \end{aligned}
N(A)=A1(B1+jA1)=π2k⎣⎡arcsinAa+Aa1−(Aa)2⎦⎤,A⩾a
(3)
当正弦输入
x
(
t
)
=
A
sin
ω
t
x(t)=A\sin\omega t
x(t)=Asinωt的振幅只在小范围内变化,使输入输出关系维持线性时,而非线性环节的描述函数反映非线性系统正弦响应中一次谐波分量的幅值与相位相对于输入信号的变化,非线性环节的近似频率特性是输入正弦信号幅值
A
A
A的函数,忽略告辞谐波分量,仅考虑基波分量,非线性环节的描述函数表现为输入正弦信号的幅值
A
A
A的复变增益放大器。