最优传输论文(六十四):Gradually Vanishing Bridge for Adversarial Domain Adaptation论文原理

本文提出了一种新的对抗性领域适应框架,名为渐消桥(GVB),旨在解决无监督领域适应中的挑战。通过在生成器和鉴别器上应用GVB,该方法能更有效地减少领域特定特征,提升表示学习的性能。实验表明,GVB在多个数据集上超越了现有方法,改善了对抗训练的平衡性。
摘要由CSDN通过智能技术生成


前言

  • 文章来自2020年的CVPR
  • 本文是本人领域自适应与最优传输系列论文的第64篇,所有系列论文的相关代码在https://github.com/CtrlZ1/Domain-Adaptation-Algorithms,希望各位大佬们不吝点赞,给个Star哦~

摘要

  • 在无监督领域自适应中,丰富的领域特性给学习领域不变表示带来了巨大挑战。然而,在现有的解决方案中,领域差异被认为是直接最小化的,这在实践中很难实现。一些方法通过显式地建模表示中的域不变量和特定于域的部分来缓解困难,但是显式构造的不利影响在于所构造的域不变量表示中剩余的特定于域的特征。在本文中,我们在生成器和鉴别器上都装备了带有渐消桥ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值