Gradually Vanishing Bridge for Adversarial Domain Adaptation

文章领域:迁移学习
效果:
在这里插入图片描述
结构:
在这里插入图片描述
这篇文章对它所提出来的GVB的描述,还是挺模糊的,没有具体的网络结构表,所以想要详细理解,还要去它公开的代码里去看。(https://github.com/cuishuhao/GVB)

损失:(结合结构理解)
(1)分类损失
在这里插入图片描述
Lce采用的是交叉熵损失,G是生成器,样本右上角的S代表是Source domain,Ns代表Source样本的个数。
这里采用的分类损失,和判别器无关,是结构图里面的G2判别的结果,所以和常规的GAN不同,此处将(一个生成器加上一个分类器)当成了一个新的生成器,自带分类能力。

(2)生成损失
在这里插入图片描述

这篇文章的思想就是既然把源域直接迁移到目标域中,十分的困难,那我们就换个思路,扩大目标域和源域之间的重叠领域,那随着重叠领域的增大,那进行迁移的难度就越小,扩大重叠领域的方法是减小两个域圆心之间的距离γ,如上图所示。
当我们理解了作者的目的是找到一个中间域之后,就好理解了。生成损失是根据中间域的生成效果来进行计算的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在上图所示的生成器损失中,真正的生成者是(G星),也就是根据γ来计算生成损失。另一方面,r = c - γ,这个地方得到的是C代表的域减去重合域之后的域空间,用r作为后续判别器的输入。(理解了好久才明白)

(3)对抗损失
在这里插入图片描述
采用的是CGAN里面的对抗损失,由源域和目标域产生,其中S代表Source domain,T代表Target domain,也比较好理解这个损失。
这个地方就用到了判别器,因为是两个域之间的判定,所以对抗损失由此计算。关键的是此处进行判别后,计算损失时,是由(目标域+中间域)+(源域+中间域)计算的,参考结构图中Adversarial Loss的构成。

(4)判别损失
在这里插入图片描述

在这里插入图片描述
判别器的损失只计算中间域的判别器的判别损失,而不加入GAN的判别起的判别损失。

(5)完整损失
在这里插入图片描述
实验:
公开了源码。
论文只介绍了在各个数据集上的测试效果,没有专门的介绍GVB的构成。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值