Gradually Vanishing Bridge for Adversarial Domain Adaptation

文章领域:迁移学习
效果:
在这里插入图片描述
结构:
在这里插入图片描述
这篇文章对它所提出来的GVB的描述,还是挺模糊的,没有具体的网络结构表,所以想要详细理解,还要去它公开的代码里去看。(https://github.com/cuishuhao/GVB)

损失:(结合结构理解)
(1)分类损失
在这里插入图片描述
Lce采用的是交叉熵损失,G是生成器,样本右上角的S代表是Source domain,Ns代表Source样本的个数。
这里采用的分类损失,和判别器无关,是结构图里面的G2判别的结果,所以和常规的GAN不同,此处将(一个生成器加上一个分类器)当成了一个新的生成器,自带分类能力。

(2)生成损失
在这里插入图片描述

这篇文章的思想就是既然把源域直接迁移到目标域中,十分的困难,那我们就换个思路,扩大目标域和源域之间的重叠领域,那随着重叠领域的增大,那进行迁移的难度就越小,扩大重叠领域的方法是减小两个域圆心之间的距离γ,如上图所示。
当我们理解了作者的目的是找到一个中间域之后,就好理解了。生成损失是根据中间域的生成效果来进行计算的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在上图所示的生成器损失中,真正的生成者是(G星),也就是根据γ来计算生成损失。另一方面,r = c - γ,这个地方得到的是C代表的域减去重合域之后的域空间,用r作为后续判别器的输入。(理解了好久才明白)

(3)对抗损失
在这里插入图片描述
采用的是CGAN里面的对抗损失,由源域和目标域产生,其中S代表Source domain,T代表Target domain,也比较好理解这个损失。
这个地方就用到了判别器,因为是两个域之间的判定,所以对抗损失由此计算。关键的是此处进行判别后,计算损失时,是由(目标域+中间域)+(源域+中间域)计算的,参考结构图中Adversarial Loss的构成。

(4)判别损失
在这里插入图片描述

在这里插入图片描述
判别器的损失只计算中间域的判别器的判别损失,而不加入GAN的判别起的判别损失。

(5)完整损失
在这里插入图片描述
实验:
公开了源码。
论文只介绍了在各个数据集上的测试效果,没有专门的介绍GVB的构成。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
Algorithm 1: The online LyDROO algorithm for solving (P1). input : Parameters V , {γi, ci}Ni=1, K, training interval δT , Mt update interval δM ; output: Control actions 􏰕xt,yt􏰖Kt=1; 1 Initialize the DNN with random parameters θ1 and empty replay memory, M1 ← 2N; 2 Empty initial data queue Qi(1) = 0 and energy queue Yi(1) = 0, for i = 1,··· ,N; 3 fort=1,2,...,Kdo 4 Observe the input ξt = 􏰕ht, Qi(t), Yi(t)􏰖Ni=1 and update Mt using (8) if mod (t, δM ) = 0; 5 Generate a relaxed offloading action xˆt = Πθt 􏰅ξt􏰆 with the DNN; 6 Quantize xˆt into Mt binary actions 􏰕xti|i = 1, · · · , Mt􏰖 using the NOP method; 7 Compute G􏰅xti,ξt􏰆 by optimizing resource allocation yit in (P2) for each xti; 8 Select the best solution xt = arg max G 􏰅xti , ξt 􏰆 and execute the joint action 􏰅xt , yt 􏰆; { x ti } 9 Update the replay memory by adding (ξt,xt); 10 if mod (t, δT ) = 0 then 11 Uniformly sample a batch of data set {(ξτ , xτ ) | τ ∈ St } from the memory; 12 Train the DNN with {(ξτ , xτ ) | τ ∈ St} and update θt using the Adam algorithm; 13 end 14 t ← t + 1; 15 Update {Qi(t),Yi(t)}N based on 􏰅xt−1,yt−1􏰆 and data arrival observation 􏰙At−1􏰚N using (5) and (7). i=1 i i=1 16 end With the above actor-critic-update loop, the DNN consistently learns from the best and most recent state-action pairs, leading to a better policy πθt that gradually approximates the optimal mapping to solve (P3). We summarize the pseudo-code of LyDROO in Algorithm 1, where the major computational complexity is in line 7 that computes G􏰅xti,ξt􏰆 by solving the optimal resource allocation problems. This in fact indicates that the proposed LyDROO algorithm can be extended to solve (P1) when considering a general non-decreasing concave utility U (rit) in the objective, because the per-frame resource allocation problem to compute G􏰅xti,ξt􏰆 is a convex problem that can be efficiently solved, where the detailed analysis is omitted. In the next subsection, we propose a low-complexity algorithm to obtain G 􏰅xti, ξt􏰆. B. Low-complexity Algorithm for Optimal Resource Allocation Given the value of xt in (P2), we denote the index set of users with xti = 1 as Mt1, and the complementary user set as Mt0. For simplicity of exposition, we drop the superscript t and express the optimal resource allocation problem that computes G 􏰅xt, ξt􏰆 as following (P4) : maximize 􏰀j∈M0 􏰕ajfj/φ − Yj(t)κfj3􏰖 + 􏰀i∈M1 {airi,O − Yi(t)ei,O} (28a) τ,f,eO,rO 17 ,建立了什么模型
05-12

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值