Probability Mass Function和Probability Density Function

本文介绍了概率质量函数(PMF)和概率密度函数(PDF)的基本概念。PMF用于离散随机变量,表示变量在特定取值上的概率,其在不可能取值处为0。例如,抛硬币的概率模型。PDF则用于连续变量,描述概率的变化趋势,通过积分得到对应区间的概率。两者都需要满足总概率为1的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 分别是概率质量函数(PMF)概率密度函数(PDF)
  • 前者,是离散随机变量在各特定取值上的概率。注意这在所有实数上,包括那些X不可能等于的实数值上,都定义了 fX(x)。在那些X不可能等于的实数值上, fX(x)取值为0 ( x ∈ R\S,取Pr(X = x) 为0)。以抛硬币为例:
    在这里插入图片描述
  • 后者,是连续变量的概率的变化率,在一定范围内积分可得对应区间的概率。
  • 上图直观理解:
    PMF:
    在这里插入图片描述
    所有的函数值相加得1.
    PDF:
    在这里插入图片描述
    面积得1,也就是在此区间对函数值进行积分。
概率、随机变量随机过程是概率论与数理统计学科中的重要概念。概率论是研究随机事件发生的可能性及其规律的数学分支,它通过概率分布函数(Probability Density Function,PDF)描述随机事件发生的概率分布情况。 随机变量是概率论中的一个重要概念,它是具有随机性的数值结果。随机变量可以分为离散型随机变量连续型随机变量。对于离散型随机变量,其取值只能是有限个或可列个,概率分布可描述为概率质量函数(Probability Mass Function,PMF)。而连续型随机变量的取值可以是实数范围内的任意值,概率分布则通过概率密度函数(Probability Density Function,PDF)来描述。 随机过程是一系列随机变量的集合,它描述了随机事件随时间变化的演化规律。随机过程可以分为离散时间连续时间两种情况。对于离散时间的随机过程,其随机变量在不同时间点上取值是离散的,可以用概率质量函数(Probability Mass Function,PMF)来描述。而对于连续时间的随机过程,随机变量取值是连续的,概率分布可以通过概率密度函数(Probability Density Function,PDF)来表示。 综上所述,概率、随机变量随机过程之间存在紧密的联系。概率可以描述随机事件发生的可能性,随机变量则是描述随机事件的数值结果,而随机过程则涉及到随机事件随时间的演化。其中,概率分布函数(PDF)在描述随机事件发生的概率分布情况中起到了重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值