卷积网络和slide windows

本文探讨了卷积网络(CNN)与滑动窗口(Slide Windows)在图像处理中的应用。卷积网络通过一次性处理整张图片,提取所有位置的特征,而滑动窗口则逐部分截取图像进行特征提取和分类。两者的区别在于处理效率和位置信息的保留。文章引用吴恩达的视频作为参考来源。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

提示:这里可以添加本文要记录的大概内容:
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


提示:以下是本篇文章正文内容,下面案例可供参考

卷积操作

卷积运算

在这里插入图片描述

一、卷积网络和slide windows类似,一个截取一小块。一个直接运行整张图片。

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、slide windows

1.滑动窗口每次只截取图像的一部分区域,进行特征提取和分类,如下图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值