Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (faster rcnn 论文翻译)

Faster R-CNN是一种实时目标检测系统,通过区域提议网络(RPN)实现几乎免费的区域提议。RPN是全卷积网络,能够预测每个位置的对象边界和得分,与Fast R-CNN共享卷积特征,从而减少计算成本。通过端到端训练,RPN可以生成高质量的区域提议,用于Fast R-CNN的检测。该系统在VGG-16模型上实现了5fps的帧率,同时保持高检测精度,且在多项竞赛中作为基础技术获奖。
摘要由CSDN通过智能技术生成

英文版论文原文:https://arxiv.org/pdf/1512.02325.pdf


Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Shaoqing Ren,Kaiming He,Dumitru Erhan,Ross Girshick&Jian Sun`

Abstract

最新的物体检测网络依靠区域提议算法来假设物体的位置。 SPPnet [1]和Fast R-CNN [2]之类的进步减少了这些检测网络的运行时间,暴露了区域提议计算的瓶颈。在这项工作中,我们介绍了一个区域提议网络(RPN),该区域提议网络与检测网络共享全图像卷积特征,从而实现几乎免费的区域提议。 RPN是一个完全卷积的网络,可以同时预测每个位置的对象边界和对象得分。对RPN进行了端到端的培训,以生成高质量的区域建议,Fast R-CNN将其用于检测。通过共享RPN和Fast R-CNN的卷积特征,我们将RPN和Fast R-CNN进一步合并为一个网络-使用最近流行的带有“注意力”机制的神经网络术语,RPN组件告诉统一网络要看的地方。对于非常深的VGG-16模型[3],我们的检测系统在GPU上具有5fps(包括所有步骤)的帧频,同时在PASCAL VOC 2007、2012和2007上达到了最新的对象检测精度。 MS COCO数据集,每个图像仅包含300个建议。在ILSVRC和COCO 2015竞赛中,Faster R-CNN和RPN是多个赛道中第一名获胜作品的基础。代码已公开提供。

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with “attention” mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

1 INTRODUCTION

区域提议方法(例如[4])和基于区域的卷积神经网络(R-CNN)[5]的成功推动了目标检测的最新进展。 尽管基于区域的CNN在计算上很昂贵,如最初在[5]中开发的,但由于在提案[1],[2]之间共享卷积,因此其成本已大大降低。 最新的化身,快速R-CNN [2],在忽略区域提案花费的时间时,使用非常深的网络[3]实现了接近实时的速度。 现在,建议是最先进的检测系统中的测试时间计算瓶颈。

Recent advances in object detection are driven by the success of region proposal methods (e.g., [4]) and region-based convolutional neural networks (R-CNNs) [5]. Although region-based CNNs were computationally expensive as originally developed in [5], their cost has been drastically reduced thanks to sharing convolutions across proposals [1], [2]. The latest incarnation, Fast R-CNN [2], achieves near real-time rates using very deep networks [3], when ignoring the time spent on region proposals. Now, proposals are the test-time computational bottleneck in state-of-the-art detection systems.

区域提议方法通常依赖于便宜的功能和经济的推理方案。 选择性搜索[4]是最流行的方法之一,它根据工程化的底层特征贪婪地合并超像素。 然而,与高效的检测网络相比[2],选择性搜索的速度要慢一个数量级,在CPU实现中每张图像2秒。 EdgeBoxes [6]当前提供建议质量和速度之间的最佳权衡,每张图像0.2秒。 尽管如此,区域提议步骤仍然消耗与检测网络一样多的运行时间。

Region proposal methods typically rely on inexpensive features and economical inference schemes. Selective Search [4], one of the most popular methods, greedily merges superpixels based on engineered low-level features. Yet when compared to efficient detection networks [2], Selective Search is an order of magnitude slower, at 2 seconds per image in a CPU implementation. EdgeBoxes [6] currently provides the best tradeoff

### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜菜菜菜菜菜菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值