常用的损失函数以及对应邻域

各种损失函数以及应用领域

回归问题

1.L1范数损失 L1Loss
2.均方误差损失 MSELoss

分类问题

1.交叉熵损失 CrossEntropyLoss / 带权重的交叉熵损失
2.KL 散度损失 KLDivLoss
3.二进制交叉熵损失 BCELoss / 带权重的二进制交叉损失 / BCEWithLogitsLoss(将BCELoss和sigmoid层合并到了一起)
4.SoftMarginLoss
5.MultiLabelSoftMarginLoss

排名问题

1.MarginRankingLoss

监测两个输入的相似性或者不相似性/编解码/半监督/无监督

1.HingeEmbeddingLoss
2.CosineEmbeddingLoss
3.SmoothL1Loss

图像分割

1.focal loss
2.iou loss
3.带权重的交叉熵损失/交叉熵损失
4.diceloss
5.TopK loss
6.Distance map penalized cross entorpy loss

不解

1.MultiMarginLoss
2.TripletMarginLoss

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值