以下是一份 OpenAI Realtime Function Calling 与 ESP32-S3 结合的纯技术方案示例,侧重于系统架构、功能接口、数据流与实现细节,帮助开发者在智能家居或物联网场景中快速搭建“自然语言 + 边缘设备”控制体系。
实测openai-realtime-embedded-sdk在ESP32-S3实时对话,延迟在500ms左右
一、系统功能概述
-
自然语言 -> 函数调用
- 在 ChatGPT 中定义可调用函数的列表,让模型在适宜场景下自动生成“函数调用请求”,包括函数名和结构化参数。
- 例如,当用户说“将卧室灯调到 50% 亮度,并读取室内温度”,模型可能自动返回一个 JSON:
以及另一条函数调用用于读取温度传感器数据。{ "name": "control_device", "arguments": { "device_id": "bedroom_light", "action": "set_brightness", "value": 50 } }
-
实时函数执行与反馈
- 后端接收到模型的函数调用请求后,与 ESP32-S3 通信(例如通过 MQTT/HTTP/WebSocket),执行实际的硬件控制或数据获取。
- 执行完成后,后端将结果(成功/失败/数据)返回给 ChatGPT,模型再在对话中生成响应文本。
被门夹过的核桃还能补脑吗?听听ChatGpt实时对话。
二、系统整体架构
下图简要描述数据流(仅文字示意):
[User] --(自然语言)-> [ChatGPT]
->(FunctionCall JSON)-> [后端服务]
->(MQTT/HTTP)-> [ESP32-S3] --(传感器或执行器)--> 物理设备
<-(操作结果/数据)-> [ESP32-S3]
<-(结果)-> [后端服务] <-(自然语言)-> [ChatGPT] <- [User]
- ChatGPT:提供对话语义分析,自动判断是否调用函数,并生成结构化的调用请求。
- 后端服务:
- 解析并执行 ChatGPT 返回的函数调用;
- 与 ESP32-S3 建立通信通道,发送控制指令或请求传感器数据;
- 接收 ESP32-S3 回传结果后再更新给 ChatGPT。
- ESP32-S3:
- 执行真实的硬件控制(如 PWM 控灯、GPIO 控制门锁、I2C/SPI 传感器读取等);
- 与后端保持在线连接,实现指令下发与数据上报的实时性。
三、功能模块与关键技术
ESP32-S3 豆包实时对讲RTC
1. ChatGPT Function Calling 配置
-
函数定义(JSON Schema)
在使用 ChatGPT API 时,需要在对话参数中指定可用函数列表。例如:"functions": [ { "name": "control_device", "description": "Control a target device with specified action", "parameters": { "type": "object", "properties": { "device_id": { "type": "string" }, "action": { "type": "string" }, "value": { "type": ["string","number","null"] } }, "required": ["device_id", "action"] } }, { "name": "read_sensor", "description": "Read a sensor value from the device", "parameters": { "type": "object", "properties": { "sensor_id": { "type": "string" } }, "required": ["sensor_id"] } } ]
- 当用户对话中提出“调节某设备”或“查询某传感器”需求时,模型会自动生成上述函数调用,后端通过解析这些调用来执行后续逻辑。
-
调用结果
后端可将执行结果打包成一个 JSON 再发回给 ChatGPT,让模型在对话中继续。
例如:{ "name": "read_sensor", "arguments": { "sensor_id": "temp_livingroom" } }
2. 后端服务(Node.js / Python 等)
- 函数调用解析
后端拿到 ChatGPT 的响应后,判断里面是否含有function_call
字段:if (response.function_call) { const { name, arguments } = response.function_call; if (name === "control_device") { // 提取参数 const { device_id, action, value } = JSON.parse(arguments); // 调用ESP32-S3控制接口 esp32ControlDevice(device_id, action, value); } else if (name === "read_sensor") { const { sensor_id } = JSON.parse(arguments); esp32ReadSensor(sensor_id); } }
- 通信接口
- 建立与 ESP32-S3 的 MQTT/HTTP/WebSocket 连接,用特定话题或 REST 路径来下发命令与获取结果。
- 例如:
function esp32ControlDevice(device_id, action, value) { const payload = { device_id, action, value }; mqttClient.publish("esp32/control", JSON.stringify(payload)); }
- 等 ESP32-S3 回复时,后端把结果(如
{"status":"OK","message":"brightness set to 50%"}
)封装给 ChatGPT。
3. ESP32-S3 设备端
-
网络连接
使用 Wi-Fi 连接路由器,再通过 MQTT/HTTP/WebSocket 与后端服务通信。// 例如基于 ESP-IDF MQTT 库的简单示例 static void mqtt_event_handler_cb(esp_mqtt_event_handle_t event) { switch (event->event_id) { case MQTT_EVENT_DATA: // 解析JSON并执行设备控制/读取 parse_payload_and_control(event->data, event->data_len); break; // ... } }
-
设备控制与传感器读取
- 根据收到的 JSON 命令 (
device_id
,action
,value
),映射到具体的硬件接口调用。例如:device_id=light_bedroom
+action=set_brightness
=> 调用 PWM 或 LEDC 设置占空比;device_id=door_lock
+action=open
=> 拉高对应 GPIO。
- 传感器读取(如温湿度、PM2.5、CO2)可通过 I2C/SPI/UART 等接口实现,然后将结果以 JSON 或者二进制格式上传 MQTT。
- 根据收到的 JSON 命令 (
-
数据上报
- 在完成操作或获取传感器数据后,ESP32-S3 将一条消息发到后端,比如:
{ "device_id": "light_bedroom", "action": "set_brightness", "status": "OK", "info": "brightness set to 50%" }
- 后端收到后即可返回给 ChatGPT,模型在对话中继续。
- 在完成操作或获取传感器数据后,ESP32-S3 将一条消息发到后端,比如:
四、示例流程
- 用户输入:
“请把卧室灯亮度调到 50%,然后帮我看看客厅温度多少。” - ChatGPT:
- 通过语义理解,决定先调用
control_device(device_id="light_bedroom", action="set_brightness", value=50)
。 - 紧接着再调用
read_sensor(sensor_id="temp_livingroom")
。
- 通过语义理解,决定先调用
- 后端解析函数调用:
control_device
=> 通过 MQTT 发送{ "device_id":"light_bedroom", "action":"set_brightness", "value":50 }
给 ESP32-S3。- 等 ESP32-S3 返回“设置成功”后,再调用
read_sensor
=> 发送{ "sensor_id":"temp_livingroom" }
给 ESP32-S3。
- ESP32-S3 执行与回复:
- 收到
control_device
命令后,调节 PWM 输出至占空比 50%,发回{"status":"OK","info":"brightness set to 50%"}
。 - 收到
read_sensor
命令后,从温度传感器读取当前值(如 27℃)并回传{"status":"OK","temp":27}
。
- 收到
- 后端将结果发送给 ChatGPT,ChatGPT 在对话中生成“卧室灯已调到 50%,客厅温度为 27℃”的文本回复。
五、系统特性与注意事项
-
实时性
- ChatGPT 自身会有一定响应延迟(通常数百毫秒到几秒),对于大多数家居操作可接受。
- 如果需要毫秒级实时响应,需要在 ESP32-S3 上本地实现快速控制逻辑,不可过度依赖云端解析。
-
函数可扩展
- 可以定义更多功能函数(如
set_color_temperature
,lock_door
,get_energy_usage
等),在 ChatGPT 的functions
列表中声明参数结构。 - 不同设备统一通过后端转发到 ESP32-S3,ESP32-S3 根据
device_id
区分具体的操作。
- 可以定义更多功能函数(如
-
安全与身份验证
- 后端需校验来自 ChatGPT 的函数调用是否可信,并对 MQTT/HTTP 接口做鉴权,防止未经授权的恶意指令。
- ESP32-S3 与后端也可使用 TLS/SSL,避免网络窃听与篡改。
-
设备状态同步
- 在有多种控制端(如手机 App、定时任务)时,需要同步设备状态到后端或 ChatGPT 对话上下文,避免状态不一致。
- 可在 ESP32-S3 端进行周期性状态上报,也可在后端做分布式缓存。
-
容错与错误处理
- 如果 ESP32-S3 离线或指令执行失败,应返回对应错误码(如
{"status":"ERROR","message":"device offline"}
),后端再通知 ChatGPT 生成对应提示。
- 如果 ESP32-S3 离线或指令执行失败,应返回对应错误码(如
六、实现步骤简要
-
准备 ChatGPT Function Calling
- 在调用 ChatGPT API 时,增加
functions
的定义,指定每个函数的名称、参数结构、功能描述。 - 在每次对话请求中,将此
functions
列表发送给模型,并允许它根据上下文自动调用。
- 在调用 ChatGPT API 时,增加
-
后端服务搭建
- 选择 Node.js / Python / Go 等,实现一个路由/逻辑模块:
- 接收 ChatGPT 的 JSON 响应;
- 判断是否有
function_call
字段; - 根据
name
执行对应的后端逻辑(MQTT/HTTP 发到 ESP32-S3 等); - 收到 ESP32-S3 回复后,再通过 ChatGPT 接口将结果返回模型。
- 需要与 ESP32-S3 协议匹配,例如设置 MQTT 主题:
esp32/control
,esp32/report
等。
- 选择 Node.js / Python / Go 等,实现一个路由/逻辑模块:
-
编写 ESP32-S3 固件
- 使用 ESP-IDF 或 Arduino 框架:
- 建立 MQTT 连接;
- 在回调函数里解析下发指令的 JSON,执行对应的外设控制(GPIO、PWM、I2C 等);
- 将执行结果/传感器数据通过 MQTT Publish 发回后端。
- 确保对各种出错场景做处理(网络中断、设备故障等)。
- 使用 ESP-IDF 或 Arduino 框架:
-
测试与验证
- 测试简单指令,如“开关灯”“读取温度”。
- 在 ChatGPT 上逐步增加更复杂的指令组合,验证多函数调用的串行或并行执行。
- 考虑网络延迟、离线、权限等问题的模拟场景。
七、总结
以上技术方案详细阐述了如何使用 OpenAI Realtime Function Calling 与 ESP32-S3 协同,完成从自然语言解析到设备端实际执行的流程。核心环节包括:
- Function Calling 配置:在对话中定义函数名和参数。
- 后端解析函数调用:将语言层意图翻译为具体设备控制指令。
- ESP32-S3 边缘控制:通过硬件接口操纵传感器或执行器,并返回结果给后端。
- 错误处理、状态同步、安全认证 等配套机制的设计。
通过此架构,开发者能够在智能家居或其他物联网场景中快速实现“自然语言 -> 实时设备控制”的需求。根据项目规模和需求复杂度,可以扩展更多函数、更多设备类型、更多安全策略,从而构建更完善的物联网系统。