review: PCA-based anomaly detection

本文介绍 Principal Component Analysis (PCA) 在数据探索和异常检测中的关键作用。通过分析多变量数据,PCA揭示变量间的关联,构建主成分来压缩特征空间。新的输入通过投影和重建误差判断异常程度,高误差表示实例越异常。
摘要由CSDN通过智能技术生成

Transfered from: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/pca-based-anomaly-detection

Principal Component Analysis, which is frequently abbreviated to PCA, is an established technique in machine learning. PCA is frequently used in exploratory data analysis because it reveals the inner structure of the data and explains the variance in the data.

PCA works by analyzing data that contains multiple variables. It looks for correlations among the variables and determines the combination of values that best captures differences in outcomes. These combined feature values are used to create a more compact feature space called the principal components.

For anomaly detection, each new input is analyzed, and the anomaly detection algorithm computes its projection on the eigenvectors, together with a normalized reconstruction error.(???) The normalized error is used as the anomaly score. The higher the error, the more anomalous the instance is.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值