Transfered from: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/pca-based-anomaly-detection
Principal Component Analysis, which is frequently abbreviated to PCA, is an established technique in machine learning. PCA is frequently used in exploratory data analysis because it reveals the inner structure of the data and explains the variance in the data.
PCA works by analyzing data that contains multiple variables. It looks for correlations among the variables and determines the combination of values that best captures differences in outcomes. These combined feature values are used to create a more compact feature space called the principal components.
For anomaly detection, each new input is analyzed, and the anomaly detection algorithm computes its projection on the eigenvectors, together with a normalized reconstruction error.(???) The normalized error is used as the anomaly score. The higher the error, the more anomalous the instance is.