对面积的曲面积分
引言:对面积的曲面积分可以用来求曲面质量
设f(x,y,z)表示曲面在(x,y,z)这点的面密度,ds为曲面在这点的微元面积
所以曲面质量为:
若另z=f(x,y),且把ds用dxdy表示,则有
由此,便可通过求二重积分求解第一个积分了。
(也可以把y表示成x,z的函数或者把x表示成y,z的函数)
对坐标的曲面积分
引言:对坐标的曲线积分求的是变力作功,对坐标的曲面积分求的则是通过曲面的流量,即把曲面放入具有指定方向的流量场,然后求单位时间内通过的流量。
*
*
*
这里又要引入新的概念。其实概念只是对现象的一种表述,有时候你见过现象,但是给你说这种概念的时候却不知道指的是哪种现象。所以要建立起一个由现象到概念的双向映射图,在我们脑中的。
*
*
*
对于一个球面,其有内侧和外侧之分。若我们取它的法向量指向朝外,则认为我们取定了它的外侧。这种指定了侧的曲面叫做有向曲面。
*
*
*
设A是有向曲面,取其上一小块面积△S,假定△S上的法向量与z轴具有相同夹角α,即cosα都是正的或负的,规定△S在xOy上的投影为
设流量场函数为:
v(x,y,z)=P(x,y,z,)i+Q(x,y,z)j+R(x,y,z)k,v为向量。
则流向A指定侧的流量为:
可以把P,Q ,R分别投影到yOz,xOz,xOy上去,因为曲面有侧,所以投影后的积分也有正有负,其中若指定的侧的法向量指向三维坐标系的外侧,则投影后的二重积分应加符号,若指向三维坐标系的内侧,则不加符号。