【论文泛读】进化多任务多目标优化的广义资源分配研究

1 题目

广义资源分配

2 摘要

2.1 目的

大多数研究没有考虑传统ETMO框架在有限的资源下某些任务无法收敛的情况。针对多目标多任务优化中的资源分配问题,本文提出了框架。

2.2 方法

结合传统资源分配的理论基础和多目标优化的特点,提出了一种广义资源分配的多任务框架。

2.3 创新

(1)设计了归一化函数更好地量化收敛状态;

(2)提出了多步非线性回归作为稳定的性能估计量;

(3)改进了常规资源配置的算法过程;

(4)灵活调整资源配置强度并纳入知识迁移过程。

2.4 结果与结论

GRA框架可以提高多目标EMTO算法在求解基准问题,复杂问题,多任务问题和实验应用问题方面的整体性能。

3 引言

3.1 现有研究不足

MOO不可知方法的主干可以之间应用于单目标多任务优化问题,而MOO感知方法则不能。

(1)MOO感知方法,将MOO的特征融入到EMTO算法中。

Lin[25]提出根据转移个体与MOO历史有效转移解的相似度来选择转移个体;

Yang[26]将变量聚类为收敛相关变量和多样性相关变量,然后对每一类变量进行不同转移强度的控制;

Lin[27]使用二元增量学习分类器来确定转移个体是否为非支配解,并将转移结果用于再训练;

Chen[28]根据优势度量化了MOO解,并从迁移学习[29]中引入了异构域适应技术。

(2)MOO不可知方法,使用各种组件来提高EMTO算法的搜索能力。

Liang[30]通过测量问题的总体分布的乘法来发现问题之间的共性,并根据得到的测量值调整知识转移的量级;

Chen[31]设计了一个多种群框架,结合JADE[32]和自适应局部搜索,以促进更好的收敛性能;

Liang[33]采用基于对立的学习[34]更好地探索决策空间,并采用简单的转换机制将个体从一个领域转换到另一个领域;

Min[21]通过MOEA/D[8]框架分解MOO解决了单任务MOO,随后使用EMTO框架解决了各种单目标优化问题。

很少有文献考虑某些MOO问题在限制计算资源下无法收敛的情况。而不同的任务具有不同的属性,并且具有不同的优化难度,因此EMTO迫切需要根据不同的属性为任务分配不同的计算资源。

(1)MFEARR[35],作者试图通过根据跨域个体的存活率舍弃知识转移过程来控制计算资源。MFEARR在单目标和多目标多任务处理问题中都有很好的表现,但其基于原始MFEA[13]的假设并不适用于许多最先进的EMTO方法。具体而言,MFEARR假设当出现分离情况时,不同领域的种群处于不同的决策空间,那么这些领域之间的信息共享对整个搜索过程几乎没有好处。然而,这一假设与许多新兴的异构领域适应算法相矛盾[28,36,37],这些算法将个体显式地从一个领域转换到另一个领域。

(2)MFEA/D-DRA[38]也在基于EMTO的MOO中合理分配分布式计算资源。MFEA/D-DRA没有从头设计分配机制,而是直接将MOEA/D-DRA[39]与原来的MFEA[13]结合在一起,其中资源分配策略简单地类似于MOEA/D-DRA[39]。[38]中的资源分配机制虽然有效,但高度依赖于MOEA/D框架,这是不灵活的,分配机制只能应用于基于MOEA/D的算法,而不能应用于其他MOO算法,如NSGA-II[6]。

(3)不同于MFEA/D-DRA和MFEARR, Gong等[40]提出了一种灵活的技术,称为MTO-DRA,动态捕获每个优化问题的收敛状态。在MTO-DRA中,每个优化任务的相对改进记录在一个向量中,在每次迭代中,根据向量的softmax函数为特定任务分配额外的生成。然而,MTO-DRA有几个缺点。由于改进向量不适用于多任务MOO环境,无法解决多任务MOO问题,无法调整资源分配强度,无法灵活应对各种属性的多任务MOO,其行为在原论文[40]中没有理论或明确的解释。

因此,根据以上讨论,设计一种灵活的多任务MOO问题资源分配机制是非常必要的。

[21] A. T. W. Min, Y.- S. Ong, A. Gupta, and C.-K. Goh, “Multiproblem surrogates: Transfer evolutionary multiobjective optimization of computationally expensive problems,” IEEE Trans. Evol. Comput., vol. 23, no. 1, pp. 15–28, 2017. doi: 10.1109/TEVC.2017.2783441

[25] J. Lin, H. L. Liu, K. C. Tan, and F. Gu, “An effective knowledge transfer approach for multiobjective multitasking optimization,” IEEE Trans. Cybern., pp. 1–11, 2020.

[26] C. Yang, J. Ding, K. C. Tan, and Y. Jin, “T wo-stage assortative mating for multi-objective multifactorial evolutionary optimization,” in Proc. IEEE 56th Annu. Conf. Decision Control (CDC), 2017, pp.76–81.

[27] J. Lin, H. L. Liu, B. Xue, M. Zhang, and F. Gu, “Multiobjective multitasking opti-mization based on incremental learning,” IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 824–838, 2020. doi:10.1109/TEVC.2019.2962747.

[28] Z. Chen, Y. Zhou, X. He, and J. Zhang, “Learning task relationships in evolutionary multitasking for multiobjective continuous optimization,” IEEE Trans. Cybern., pp. 1–12, 2020.

[29] C. Wang and S. Mahadevan, “Heterogeneous domain adaptation using manifold alignment,” in IJCAI Proc.—Int. Joint Conf. Artif. Intell., 2011, vol. 22, no. 1, p. 1541.

[30] Z. Liang, W. Liang, X. Xu, and Z. Zhu, “A two stage adaptive knowledge transfer evolutionary multi-tasking based on population distribution for multi/many-objective optimization,” 2020,arXiv:2001.00810.

[31] Y. Chen, J. Zhong, and M. Tan, “A fast memetic multi-objective differential evolution for multi-tasking optimization,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2018, pp. 1–8.

[32] J. Zhang and A. C. Sanderson, “Jade: Adaptive differential evolution with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958, 2009. doi: 10.1109/TEVC.2009.2014613.

[33] Z. Liang, J. Zhang, L. Feng, and Z. Zhu, “A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking,” Expert Syst. Appl., vol. 138, p. 112798, 2019.

[34] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-based differential evolution,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 64–79, 2008. doi: 10.1109/TEVC.2007.894200.

[35] Y.-W. Wen and C.-K. Ting, “Parting ways and reallocating resources in evolutionary multitasking,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2017, pp. 2404–2411.

[36] L. Feng, L. Zhou, J. Zhong, A. Gupta, Y.- S. Ong, K.-C. Tan, and A. K. Qin, “Evolutionary multitasking via explicit autoencoding,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3457–3470, 2018. doi: 10.1109/TCYB.2018.2845361.

[37] Z. Tang, M. Gong, Y. Wu, W. Liu, and Y. Xie, “Regularized evolutionary multi-task optimization: Learning to inter-task transfer in aligned subspace,” IEEE Trans. Evol. Comput., p. 1, 2020.

[38] S. Yao, Z. Dong, X. Wang, and L. Ren, “A multiobjective multifactorial optimization algorithm based on decomposition and dynamic resource allocation strategy,” Inf. Sci., vol. 511, pp. 18–35, 2020. doi: 10.1016/j.ins.2019.09.058.

[39] Q. Zhang, W. Liu, and H. Li, “The performance of a new version of moea/d on cec09 unconstrained mop test instances,” in Proc. IEEE Congr. Evol. Comput., 2009, pp. 203–208.

[40] M. Gong, Z. Tang, H. Li, and J. Zhang, “Evolutionary multitasking with dynamic resource allocating strategy,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 858–869, 2019. doi:10.1109/TEVC.2019.2893614.

3.2 本研究创新

(1)设计了一种归一化的增益函数和多步非线性回归来量化MOO的收敛性能,将MTO-DRA扩展到MOO问题。

(2)分析MTO-DRA的行为和动机建立广义数学模型,并在此基础上提出了一种设计知识迁移信息和调整资源配置强度的新算法。

4 图表分析

图1:所提出的总体评估架构及资源分配的一般思路。左边部分描述了多种群框架、跨种群进化和资源分配组件。右边部分描述了我们的一般算法思想,即为更有希望的任务分配更多的资源。

图2:目标空间中给定集合{S1,S2,S3}的实现函数示意图。目标空间包括目标函数f1和f2。灰色区域中的点可以支配集合中的至少一个元素。(存疑)

图3:目标空间中给定集合{S1,S2,S3}修正后的实现函数示意图。灰色区域中的点可以支配给定集合中的至少一个元素。原点被设置为(−0.5,−0.5)而不是(0,0)。

表1-3:采用基准方法MOMFEA和MFEARR进行比较。

表4-6:验证a)所提出的GRA是否可以改进基本优化器,b)所提出的GRA是否比其基本对应MTO-DRA更好。

表7-9:与自适应方法的比较。

图4:参数敏感性分析,不同RAP参数下的GRA排名。

表10:资源配置强度的敏感性分析。

表11:多种群MFEA的实验结果比较。

图5 :GRA、MTO-DRA、MMDE在代表性问题集CPLX8和CPLX10上的收敛轨迹及对应的GRA资源分配细节。

图6:典型问题集CPLX8和CPLX10的详细资源分配结果。每个图中的(x, y)点表示第x代分配给任务y的计算资源。

表12:现实应用案例研究--高光谱解混

表13:现实世界应用案例结果

5 框架总结

5.1 目的

大多数研究没有考虑传统ETMO框架在有限的资源下某些任务无法收敛的情况。针对多目标多任务优化中的资源分配问题,本文提出了框架。

5.2 方法

结合传统资源分配的理论基础和多目标优化的特点,提出了一种广义资源分配的多任务框架

5.3 实验

测试问题:CEC2017,WCCI2020;实际问题。

实验设置:

(1)与基准算法比较;

(2)与现有最先进算法比较;

(3)与自适应算法比较;

(4)参数敏感性分析;

(5)实现细节分析。

5.4 评价指标

MSS;

IGD;

6 本研究不足与未来工作

6.1 本研究不足

6.2 未来工作

开发一个自适应组件来更好地控制分配强度,从而有望将GRA的性能提升到更高的水平。

本文引自T. Wei和J. Zhong, 《Towards Generalized Resource Allocation on Evolutionary Multitasking for Multi-Objective Optimization》, IEEE Comput. Intell. Mag., 卷 16, 期 4, 页 20–37, 11月 2021, doi: 10.1109/MCI.2021.3108310.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值