MaTEA--解决Many多任务优化问题

文章介绍了一种新的多任务优化框架MaTEA,它通过KL散度度量任务相似性,利用档案记录任务信息,解决任务到达时间不一致的问题。MaTEA包含自适应奖励策略和知识迁移交叉,适用于处理异构多任务优化挑战。
摘要由CSDN通过智能技术生成

MaTEA–解决Many多任务优化问题

title:An Adaptive Archive-Based Evolutionary Framework for Many-Task Optimization

author:Yongliang Chen, Jinghui Zhong , Liang Feng , and Jun Zhang.

journal:IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE(TETCI)

DOI10.1109/TETCI.2019.2916051

code:https://github.com/intLyc/MTO-Platform/tree/master/MTO/Algorithms/Multi-task/Multi-population/MaTDE

1.主要贡献:

1)提出了一种基于KL散度(KLD)的任务相似性度量方式,来选择相似任务。

2)利用档案来记录不同任务在演化过程中的相关信息。

3)MaTEA可以解决任务到达时间不一致的问题。

2.问题提出:

1)当任务数量增多时,MFEA中的知识迁移策略可能会变得无效,因为它不能根据MaTO的环境变化来进行自我调整。因此,本文提出了一种相似任务选择策略。

2)多个任务动态到达问题,也就是说任务的到达时间是不一致的。

3.MaTEA:

1)KLD计算相似度
K L D ( A c c 0 ∣ ∣ A c 1 ) = 1 2 ( t r ( Σ 1 − 1 Σ 0 ) + ( μ 1 − μ 0 ) T Σ 1 − 1 ( μ 1 − μ 0 ) − D + l n ( d e t Σ 1 d e t Σ 0 ) ) KLD(Ac_{c_0}||A_{c_1})=\frac 1 2\bigg(tr(\Sigma^{-1}_1\Sigma_0)+{(\mu_1-\mu_0)}^T\Sigma^{-1}_1(\mu_1-\mu_0)-D+ln(\frac{det\Sigma_1}{det\Sigma_0})\bigg) KLD(Acc0∣∣Ac1)=21(tr(Σ11Σ0)+(μ1μ0)TΣ11(μ1μ0)D+ln(detΣ0detΣ1))
其中 A c 0 A_{c_0} Ac0 A c 1 A_{c_1} Ac1表示任意两个任务的存档, Σ \Sigma Σ表示协方差矩阵, μ \mu μ表示均值向量, D = m i n { D 0 , D 1 } D=min\{D_0,D_1\} D=min{D0,D1}表示协方差矩阵的维度。如下图所示,由于任务维度的不一致, K L D KLD KLD是不对称的。为了使得 K L D KLD KLD对称,相似度 S i m Sim Sim被计算如下:
S i m ( T 0 . T 1 ) = 1 2 ( K L D ( A c 0 ∣ ∣ A c 1 ) + K L D ( A c 1 ∣ ∣ A c 0 ) ) Sim(T_0.T_1)=\frac1 2(KLD(A_{c_0}||A_{c_1})+KLD(A_{c_1}||A_{c_0})) Sim(T0.T1)=21(KLD(Ac0∣∣Ac1)+KLD(Ac1∣∣Ac0))
image-20240309112635675

2)自适应奖励策略:

​ 由下图所示,当两个任务分布相似时,它们可能朝着不同的方向进化,因此,只考虑相似性是不够的。MaTEA中采用了自适应奖励机制来解决这样的问题。

image-20240309113120070

首先,相似任务 T a T_a Ta是通过轮盘赌选择得到的,第 j j j个任务的概率被计算如下:
p r o b a b i l i t y t j = s c o r e t j ∑ i ≠ t s c o r e t i s c o r e t j = ρ ⋅ s c o r e t j + R t j l o g ( S i m ( T t , T j ) ) R t a = { R t a / λ , i f   p b e s t   i s   w o r s e   t h a n   p ′ R t a ⋅ λ , o t h e r w i s e probability^j_t=\frac{score^j_t}{\sum_{i\ne t} score^i_t}\\ score^j_t=\rho\cdot score^j_t+\frac{R^j_t}{log(Sim(T_t,T_j))}\\ R^a_t=\begin{cases} R^a_t/\lambda,if\ p_{best}\ is\ worse\ than\ p'\\ R^a_t\cdot\lambda ,otherwise \end{cases} probabilitytj=i=tscoretiscoretjscoretj=ρscoretj+log(Sim(Tt,Tj))RtjRta={Rta/λ,if pbest is worse than pRtaλ,otherwise
其中, R t a R^a_t Rta是选择 T a T_a Ta帮助 T i T_i Ti的奖励, λ \lambda λ是(0,1)内的收缩率, s c o r e t j score^j_t scoretj表示任务 T j T_j Tj被选择来帮助任务 T t T_t Tt的分数。 ρ \rho ρ是衰减系数, l o g ( ⋅ ) log(\cdot) log()用于限制奖励和相似性的大小。

3)知识迁移交叉

任务 T t T_t Tt和任务 T a T_a Ta之间的知识迁移交叉是通过交叉概率 C R K T C CR_{KTC} CRKTC控制的。
v i ( j ) = { p a ( j ) ,   i f   r a n d ( 0 , 1 ) < C R K T C   o r   j = k p t i ( j ) , o t h e r w i s e . v^i(j)=\begin{cases} p_a(j),\ if\ rand(0,1)<CR_{KTC}\ or\ j=k\\ p^i_t(j),otherwise. \end{cases} vi(j)={pa(j), if rand(0,1)<CRKTC or j=kpti(j),otherwise.
image-20240309115200021

4)算法框架与实现

首先,为每个任务都设置一个种群,存档,和进化求解器。其次,通过KLD计算任务相似度。接着,采用自适应奖励机制选择迁移任务。然后,使用知识迁移交叉来实现知识迁移。最后选择下一代种群并更新存档。

image-20240309115841013 image-20240309115932491

4.思考

1)在多任务优化中的异构问题:最优解距离较远,决策变量维度不一致等。AT-MFEA–解决异构多任务优化问题-CSDN博客MTGA–采用偏差估计策略的多任务优化算法(附平台代码)-CSDN博客G-MFEA–构建多任务优化框架解决昂贵优化问题-CSDN博客

2)迁移频率:MFEA-II–自适应迁移概率的MFEA-CSDN博客SREMTO–自调节进化多任务优化-CSDN博客

3)在MaTEA中未曾对任务动态到达的多任务环境进行测试。

  • 28
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tiger-woods

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值