信道容量的数值解法(非对称信道)

本文探讨了如何使用Python解决非对称信道的信道容量问题,涉及信息论中的最优化算法。通过实例解析,详细阐述了计算过程和关键步骤。
摘要由CSDN通过智能技术生成
from scipy.optimize import minimize
import numpy as np
import math

"""
                       [0.5,0.3,0.2]
求解信道传递矩阵为P(Y|X)=[0.3,0.5,0.2]的非对称信道的信道容量C
                       [0.1,0.2,0.7]
--------------------------------------------------------
                          [0.5,0.3,0.2]
P(Y)=P(X)P(Y|X)=[p1,p2,p3][0.3,0.5,0.2]=[0.5p1+0.3p2+0.1p3,0.3p1+0.5p2+0.2p3,0.2p1+0.2p2+0.7p3]
                          [0.1,0.2,0.7]
-----------------------------------------------------------------------------------------------

H(Y|X)=P(X)H(Y|X=x)=H(0.5,0.3,0.2)p1+H(0.3,0.5,0.2)p2+H(0.1,0.2,0.7)p3

----------------------------------------------------------------------

C=max{I(X;Y)}=H(Y)-H(Y|X)=H(0.5p1+0.3p2+0.1p3,0.3p1+0.5p2+0.2p3,0.2p1+0.2p2+0.7p3)-
  P(x)                    (H(0.5,0.3,0.2)p1+H(0.3,0.5,0.2)p2+H(0.1,0.2,0.7)p3)=f(p1,p2,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值