RS编码过程通俗理解

本文详细介绍了RS编码的过程,包括理解伽罗华域(GF(256))的概念,如何在域内进行运算,使用模100011101生成2的幂次,生成多项式的作用,以及如何生成纠错码。通过实例展示了从数据到纠错码的转换步骤,帮助读者深入理解RS码的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明本文^代表异或,**代表幂

第一步:理解伽罗华域(有限域)

伽罗瓦域本质上是一个受限的集合,以及一些数学运算,使得运算的结果仍然在这个集合中。

对于二维码标准来说,要使用位为模数2的算子,字节为模数100011101(本原多项式x**8+x**4+x**3+x**2+1)的算子。这意味着使用GF(2**8),有时写成GF(256)。

GF(256)中的数字都在0到255(含)的范围内。请注意,这也是可以用一个八位比特表示的范围(最大的八位比特是1111_1111,等于255)。

这意味着GF(256)中所有的数学运算都将产生可以用八位字节表示的数字。

第二步:理解伽罗华域内的运算

如前所述,GF(256)包含0到255(含)的数字。GF(256)中的数学运算具有循环性,也就是说,如果在GF(256)中进行数学运算,得到的数字大于255,那么就需要使用求模运算来得到一个仍然在伽罗瓦域中的数字。

在伽罗瓦域中,负数与正数具有相同的值,所以-n=n.换句话说,在伽罗瓦场算术中,始终要使用数字的绝对值。

这就是说,伽罗瓦域内的加法和减法是一回事。伽罗瓦域内的加减法是按正常的方法做加减法,但又要进行模数运算。而由于我们使用的是模2运算(在QR码规范中提到过),这和执行XOR运算是一样的。比如说

1+1=2%2=0

1^1=0

0+1=1%2=1

0^1=1

第三步:用模100011101生成2的幂次

GF(256)中的所有数字都可以用2的幂来表示,具体来说,GF(256)中的所有数字都可以用2**n来表示,其中0 <= n <= 255。然而,如前所述,GF(256)中的所有数字本身必须在0到255的范围内,所以2**8对于伽罗瓦场来说似乎太大了,因为它等于256。

从0到8的2的幂是。
2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32
2**6 = 64
2**7 = 128
2**8 = 256

二维码规范中说,要使用字节的模100011101运算(其中100011101是二进制数,相当于十进制的285)。这意味着当一个数字为256或更大时,应该用285进行XOR。

换句话说
2*

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值