均匀节点插值与切比雪夫插值以及龙格现象

本文探讨了在数值分析中,均匀节点插值与切比雪夫插值两种不同的数据插值方法,并详细分析了龙格现象及其对插值精度的影响。通过实例和Python实现,展示了两种插值方法的差异,为理解和避免插值过程中的精度损失提供了深入理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import matplotlib.pyplot as plt


def inter_x(a, b, n):
    """
    
    :param a: 插值区间左端点
    :param b: 插值区间右端点
    :param n: 插值点个数
    :return: 插值节点向量
    """
    x = np.zeros(n+1)
    h = (b - a) / n
    for i in range(n+1):
        x[i] = a + i * h
    return x


def inter_y(x, f):
    """
    
    :param x: 插值节点向量
    :param f: 插值函数
    :return: 对应节点上的函数值向量
    """
    n = np.size(x)
    y = np.zeros(np.size(x))
    for i in range(n):
        y[i] = f(x[i])
    return y


def fun(x):

    return np.exp(np.abs(x))


def lagrange(x, inx, iny):

    a0 = (x - inx[1]) * (x - inx[2]) * (x - inx[3])
    b0 = (inx[0] - inx[1]) * (inx[0] - inx[2]) * (inx[0] - inx[3])

    a1 = (x - inx[0]) * (x - inx[2]) * (x - inx[3])
    b1 = (inx[1] - inx[0]) * (inx[1] - inx[2]) * (inx[1] - inx[3])

    a2 = (x - inx[0]) * (x - inx[1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值