论文中比较好看的图

不断更新中…

其实对于机制示意图而言,颜色的饱和度尽量不要太高(饱和度越高越鲜艳),选择柔和一点的深暗色及浅色系搭配起来,比如前几期的机制图绘制

对于数据图的颜色使用,参考了一位大佬(ID: DrZhao93)的视频,总结了笔记发给大家:

  • (一)单条数据线:

      a. 传统:黑/红   流行:深灰/深蓝
      b. 带有其他彩色信息的单条数据线:黑色
      c. 细密、噪音大的单条数据线:深灰色(更清晰,不会乱成一团)
      d. 灰度图、伪彩色图中的单条数据线及标记:使用饱和度高的亮色
      e. 多彩色背景图中的同类型数据点:黑色(若还不够突出,加上白色轮廓)
      f. 多彩色背景图中的同类型数据线:白色、黑色或者与背景对比较强的颜色
    
  • (二)两条数据线:

     a. 主次数据对比:最传统的  黑色   vs  红、蓝、绿
     b. 对等数据对比:最流行的  红 +  蓝(不一定饱和度特别高,偏深色也ok)    ,也可以使用互补色 
         对比(AI面板自带,本视频里第五点有说明)
     c. 同一个量的变化:深浅色对比(如黑+灰,深蓝+浅蓝,深红+浅红)
     d. 拟合数据线:拟合线用彩色,背景数据用灰色
    
  • (三)三条数据线

  •     传统配色  黑/灰(次要数据)+红+蓝
    
  • (四)很多数据、成组数据

  •  a. 同类型数据:黑/灰、红、蓝(核心数据可加深、加粗)
     b. 变化较大/发生质变的成组数据:彩虹色渐变
     c. 连续变化的成组数据:近似色渐变
     d. 连续变化且接近极致的成组数据:双色渐变、三色渐变(可使用本视频里第2个和第3个网址里的渐变色,origin也有自带的渐变色)
     成组数据情况较多,关键是要突出数据 
    

1:《On Neural Differential Equations》
在这里插入图片描述
配色不错,逻辑结构清晰,模块组织完美。

2:《Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations》
在这里插入图片描述
3:《SRFlow》
请添加图片描述

请添加图片描述
4 《LIKELIHOOD TRAINING OF SCHRÖDINGER BRIDGE USING FORWARD-BACKWARD SDES THEORY》在这里插入图片描述

配色不错

5
请添加图片描述
请添加图片描述
请添加图片描述
6 toy data的可视化
《Potential Flow Generator with L2 Optimal Transport Regularity for Generative Models》
在这里插入图片描述
《SCORE-BASED GENERATIVE MODELING WITH CRITICALLY-DAMPED LANGEVIN DIFFUSION》
在这里插入图片描述
在这里插入图片描述

或者可以参照Github链接中的Denoiser_haiku.ipynb文件夹编写实验代码。

7 《Neural Stochastic Differential Equations with Neural Processes
Family Members for Uncertainty Estimation in Deep Learning》
在这里插入图片描述
8 《Automating DBSCAN via Deep Reinforcement Learning》

在这里插入图片描述
在这里插入图片描述
9 《Reverse Graph Learning for Graph Neural Network》
在这里插入图片描述

### SCI模型表配色方案设计 在SCI论文撰写过程中,表的设计和配色对于清晰表达研究结果至关重要。为了使表更具吸引力并易于理解,可以参考已有的期刊配色方案来优化视觉效果。 #### 1. 基于期刊的配色推荐 已有超过2200种SCI期刊提供了各自的配色方案[^3],这些方案通常经过精心设计以满足学术出版的标准。例如,《New England Journal of Medicine》(新英格兰医学杂志)采用了一套经典的默认配色方案,其特点是简洁明了且对比度高,非常适合用于展示复杂的科学数据。 #### 2. 数据可视化中的色彩原则 在选择颜色时应遵循一定的原则,比如利用互补色增强对比度,或者通过渐变色突出趋势变化。此外,在绘制相关系数矩阵时,合理运用冷暖色调可以帮助读者快速识别不同变量之间的关系强度[^2]。 #### 3. 实践技巧与工具支持 以下是几个实用的小贴士以及可能需要用到的技术手段: - **一致性**:整个文档内的所有形应该保持统一风格; - **可访问性**:考虑到色盲人群的需求,避免仅依赖颜色区分信息; - 使用专业的绘软件如Matplotlib (Python库),它允许自定义调色板以便更好地控制呈现效果; ```python import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap # 定义一个新的colormap colors = ["#FFA500", "#87CEEB"] # 橙蓝双色代表正负关联程度 cmap = ListedColormap(colors) plt.figure(figsize=(6, 6)) plt.imshow(correlation_matrix, cmap=cmap) plt.colorbar() plt.show() ``` 上述代码片段展示了如何创建一个简单的二元热力 colormap 来表示两个极端值之间过渡的颜色状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三只佩奇不结义

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值