不断更新中…
其实对于机制示意图而言,颜色的饱和度尽量不要太高(饱和度越高越鲜艳),选择柔和一点的深暗色及浅色系搭配起来,比如前几期的机制图绘制
对于数据图的颜色使用,参考了一位大佬(ID: DrZhao93)的视频,总结了笔记发给大家:
-
(一)单条数据线:
a. 传统:黑/红 流行:深灰/深蓝 b. 带有其他彩色信息的单条数据线:黑色 c. 细密、噪音大的单条数据线:深灰色(更清晰,不会乱成一团) d. 灰度图、伪彩色图中的单条数据线及标记:使用饱和度高的亮色 e. 多彩色背景图中的同类型数据点:黑色(若还不够突出,加上白色轮廓) f. 多彩色背景图中的同类型数据线:白色、黑色或者与背景对比较强的颜色
-
(二)两条数据线:
a. 主次数据对比:最传统的 黑色 vs 红、蓝、绿 b. 对等数据对比:最流行的 红 + 蓝(不一定饱和度特别高,偏深色也ok) ,也可以使用互补色 对比(AI面板自带,本视频里第五点有说明) c. 同一个量的变化:深浅色对比(如黑+灰,深蓝+浅蓝,深红+浅红) d. 拟合数据线:拟合线用彩色,背景数据用灰色
-
(三)三条数据线
-
传统配色 黑/灰(次要数据)+红+蓝
-
(四)很多数据、成组数据
-
a. 同类型数据:黑/灰、红、蓝(核心数据可加深、加粗) b. 变化较大/发生质变的成组数据:彩虹色渐变 c. 连续变化的成组数据:近似色渐变 d. 连续变化且接近极致的成组数据:双色渐变、三色渐变(可使用本视频里第2个和第3个网址里的渐变色,origin也有自带的渐变色) 成组数据情况较多,关键是要突出数据
1:《On Neural Differential Equations》
配色不错,逻辑结构清晰,模块组织完美。
2:《Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations》
3:《SRFlow》
4 《LIKELIHOOD TRAINING OF SCHRÖDINGER BRIDGE USING FORWARD-BACKWARD SDES THEORY》
配色不错
5
6 toy data的可视化
《Potential Flow Generator with L2 Optimal Transport Regularity for Generative Models》
《SCORE-BASED GENERATIVE MODELING WITH CRITICALLY-DAMPED LANGEVIN DIFFUSION》
或者可以参照Github链接中的Denoiser_haiku.ipynb文件夹编写实验代码。
7 《Neural Stochastic Differential Equations with Neural Processes
Family Members for Uncertainty Estimation in Deep Learning》
8 《Automating DBSCAN via Deep Reinforcement Learning》
9 《Reverse Graph Learning for Graph Neural Network》