BuildSenSys: Reusing Building Sensing Data for Traffific Prediction with Cross-domain Learning

BuildSenSys: Reusing Building Sensing Data for Traffific Prediction with Cross-domain Learning

利用跨域学习重用建筑传感数据进行交通预测

基本信息

博客贡献人

花荣

作者

Xiaochen Fan* , Chaocan Xiang*, Chao Chen, Panlong Yang, Liangyi Gong, Xudong Song, Priyadarsi Nanda, Xiangjiang He

[重要作者提示]

*范晓晨,澳大利亚悉尼理工大学(UTS)

标签

Internet of Things, Building Sensing Data, Machine Learning, Traffific Prediction, Cross-domain Learning

摘要

  智能建筑感知数据与交通预测之间的关系。从智慧城市的另一个角度,智慧建筑具有大量各种类型的传感器,覆盖规模大,感知数据量大。因此,如此大规模的智能建筑感知大数据,为城市感知提供了一个新的角度。交通预测是根据来自一系列路段或观察传感器的给定历史交通状态,对未来的交通状态(即交通速度和交通流量)进行预测。基于此,本文分析认为智能建筑感知数据与交通之间可能存在关联。本文主要从以下三个方面展开研究:
  1.建筑数据与附近交通量相关,通勤者的通勤活动所引起的建筑占用率的变化与附近道路上的交通量的动态高度相关。建筑居住者通过道路的概率越高,建筑-交通的相关性就越强。;
  2.提出了一种基于跨域学习的交通量预测递归神经网络。它利用基于跨域注意的编码器和基于时间注意的解码器,准确地提取非线性、时变、跨域构建-交通相关性,进一步实现准确的交通量预测;
  3.BuildSenSys在预测附近体积方面优于所有基线方法,准确率提高高达65.3%。

问题定义:

建筑数据类型:
N = N o + N e N=N_o+N_e N=No+Ne
N表示建筑物的物联网传感器产生用于交通预测的传感数据的类型, N o N_o No表示占用类型; N e N_e Ne表示环境类型
建筑传感数据:
X [ 1 : T ] = [ x 1 , x 2 , ⋯ , x T ] T × n X_{[1:T]} =[x_1,x_2,⋯,x_T ]_{T×n} X[1:T]=[x1,x2,,xT]T×n
表示在时间间隔为T时所有建筑数据的测量矩阵。
交通流量数据: y t y_t yt表示t时刻目标路段的交通量,则有1≤t≤T-1。那么目标路段跨越T-1时间间隔的历史交通量向量则为:
Y [ 1 : T − 1 ] , y = { y ( j ) ∣ 1 ≤ j ≤ T − 1 } Y_{[1:T-1] },y=\{y(j)|1≤j≤T-1\} Y[1:T1]y={y(j)∣1jT1}
未来交通流量:
Y ^ [ T : T + τ ] = { y ( j ) ∣ 1 ≤ j ≤ T − 1 } \hat{Y}_{[T:T+τ]}=\{y(j)|1≤j≤T-1\} Y^[T:T+τ]={y(j)∣1jT1}
其中, Y ^ [ T : T + τ ] \hat{Y}_{[T:T+τ]} Y^[T:T+τ]表示其真实性, τ τ τ表示预测的时间间隔。

鉴于以上定义,假设给定在时间间隔为T的n种类型建筑传感数据和在时间间隔为T-1的目标路段历史数据,那么预估在未来时间间隔为 τ τ τ的实时交通量优化预测误差为:
‖ Y ^ [ T : ′ ′ T + τ ] − Y [ T : T + τ ] ‖ F 2 ,( 1 ) ‖\hat{Y}_{[T:''T+τ]}-Y_{[T:T+τ]} ‖_F^2, (1) Y^[T:′′T+τ]Y[T:T+τ]F2,(1
Y ^ [ T : T + τ ] = F ( y [ 1 : T − 1 ] , X [ 1 : T ] ) ( 2 ) \hat{Y}_{[T:T+τ]}=F(y_{[1:T-1]} ,X_{[1:T]} ) (2) Y^[T:T+τ]=F(y[1:T1],X[1:T])2
其中,F(∙)表示从构建感知数据到预测模型需要学习的交通数据的非线性映射函数。

方法

方法架构图

在这里插入图片描述

图1
图1:BuildSenSys的网络架构。首先,我们对输入数据采用跨域关注来捕获建筑-交通相关性,并在预测的每一步自适应地选择最相关的建筑感知数据。其次,我们应用时间关注从历史依赖性中捕获时间特征。然后BuildSenSys自适应地跨所有时间间隔选择最相关的编码器隐藏状态。通过将上述注意机制与基于LSTM的递归神经网络相结合,我们可以进一步联合训练具有标准反向传播BuildSenSys模型。因此,BuildSenSys能够选择最相关的建筑感知数据来进行交通预测,并捕获交通量的长期时间特征。

方法描述

简单而言,我们提出的BuildSenSys包括两部分,一部分是基于cross-domain attention的encoder,将occupancy view和environmental view的相关性进行动态加权,一部分时利用temporal attention的decoder机制,将historical view时间维度的相关性进行动态加权,最后估计得到traffic volume的实时估计值。

基于cross-domain attention的encoder

BuildSenSys框架中的编码器是一个基于LSTM的递归神经网络,它将输入序列编码为一个特征向量。对于cross-domain attention交通量预测,给定N种类型的建筑感知数据,我们将输入序列表示为 X = ( x 1 , ⋯ , x t , ⋯ , x T ) X=(x_1,⋯,x_t,⋯,x_T ) X=(x1,,xt,,xT),其中 x t = R N x_t=R^N xt=RN。编码器在时间间隔t时的隐藏状态可以表示为
h t = f e ( h ( t − 1 ) , x t ) ,( 3 ) h_t=f_e (h_(t-1),x_t), (3) ht=fe(h(t1),xt),(3
其中 h ( t − 1 ) ∈ R p h_(t-1)∈R^p h(t1)Rp表示编码器在时间间隔t-1的隐藏状态,p为编码器中隐藏状态的大小, f e f_e fe是一种基于LSTM的递归神经网络。由于LSTM能够学习长期的依赖关系,我们采用了经典的LSTM单元,即具有一个记忆细胞和三个s型门。
由于LSTM能够学习长期依赖性,所以我们采用了经典的LSTM单元,该单元具有一个存储单元和三个S形门。在时间间隔t,存储器的单元状态为 s t s_t st,遗忘门为 f t f_t ft,输入门为 i t i_t it。因此,编码器LSTM通过以下方式更新其隐藏状态:
f t = σ ( W f [ h ( t − 1 ) ; x t ] ) + b f ,( 4 ) f_t=σ(W_f [h_(t-1);x_t ])+b_f, (4) ft=σ(Wf[h(t1);xt])+bf,(4
i t = σ ( W i [ h ( t − 1 ) ; x t ] ) + b i ,( 5 ) i_t=σ(W_i [h_(t-1);x_t ])+b_i, (5) it=σ(Wi[h(t1);xt])+bi,(5

o t = σ ( W o [ h ( t − 1 ) ; x t ] ) + b o ,( 6 ) o_t=σ(W_o [h_(t-1);x_t ])+b_o, (6) ot=σ(Wo[h(t1);xt])+bo,(6

s t = f t ⨀ s t − 1 + i t ⨀ t a n ⁡ h ( W s [ h t − 1 ; x t ] ) + b s ,( 7 ) s_t=f_t⨀s_{t-1}+i_t⨀tan{⁡h} (W_s [h_{t-1};x_t ])+b_s, (7) st=ftst1+ittanh(Ws[ht1;xt])+bs,(7
h t = o t ⨀ t a n ⁡ h ( s t ) , ( 8 ) h_t=o_t⨀tan⁡h(s_t), (8) ht=ottanh(st),8
其中[∙;∙]是一个链接操作,⨀表示逐点乘法, W f , W i , W o , W s , b f , b i , b o , b s W_f,W_i,W_o,W_s,b_f,b_i,b_o,b_s WfWiWoWsbfbibobs均表示可学习的参数。
在这项工作中,我们的目标是利用不同类型的建筑传感数据和历史交通量数据来预测交通量。为了实现这一目标,我们建议跨领域关注来捕捉复杂的建筑流量相关性,并增强所有输入数据的特征表示。具体而言,基于跨域相关性分析的结果,我们建议分别学习与占用分量和环境分量的不同相关性。
(1)占用分量
我们设想了一种用于交通量预测的多区域场景,其中第j个区域的占用率为 X j = ( x 1 j , x 2 j ⋯ , x t j ) T ∈ R T , 1 ≤ j ≤ N o X^j=(x_1^j,x_2^j⋯,x_t^j )^T∈R^T,1≤j≤N_o Xj=(x1j,x2j,xtj)TRT,1jNo。通过参考编码器LSTM的先前隐藏状态 h t − 1 h_{t-1} ht1和先前小区状态 S t − 1 S_{t-1} St1,计算占用率分量的跨域注意力为
σ t j = v o T t a n ⁡ h ( W o [ h t − 1 ; S t − 1 ] + U O x j + b o ) ,( 9 ) σ_t^j=v_o^T tan⁡h (W_o [h_{t-1};S_{t-1}]+U_O x^j+b_o), (9) σtj=voTtanh(Wo[ht1;St1]+UOxj+bo),(9
β t j = e x p ( o t j ) ∑ i = 1 N o e x p ( o t i ) ( 10 ) β_t^j=\frac{exp(o_t^j)}{\sum_{i=1}^{N_o}{exp(o_t^i)}} (10) βtj=i=1Noexp(oti)exp(otj)10
其中 v o , b o ∈ R T , W o ∈ R T × 2 p v_o,b_o∈R^T,W_o∈R^{T×2p} voboRTWoRT×2p并且 U o ∈ R T × T U_o∈R^{T×T} UoRT×T是学习参数。通过使用另一个softmax函数,我们确保所有具有占用分量的注意力权重都是归一化的,并且所有占用输入数据的总权重是1。对于所有公共区域的跨域注意力权重,我们从时间间隔t的占用分量中获取输出向量,如下所示:
X ^ t o c c = ( β t 1 x t 1 , ⋯ β t j x t j , ⋯ β t N o x t N o ) T ( 11 ) \hat{X} _t^{occ}=(β_t^1 x_t^1,⋯β_t^j x_t^j,⋯β_t^{N_o } x_t^{N_o })^T (11) X^tocc=(βt1xt1βtjxtjβtNoxtNo)T11

(2)环境分量
我们给定第 k t h k_{th} kth种环境数据输入类型为 x k x^k xk,其中 X k = ( x 1 k , x 2 k ⋯ , x t k ) T ∈ R T , 1 ≤ k ≤ N o X^k =(x_1^k,x_2^k⋯,x_t^k )^T∈R^T,1≤k≤N_o Xk=(x1k,x2k,xtk)TRT,1kNo。我们对环境分量采用跨域关注,通过以下方式自适应地捕捉交通量和第k类环境数据之间的动态相关性:
e t k = v o T t a n ⁡ h ( W e [ h t − 1 ; S t − 1 ] + U e x k + b e ) ,( 12 ) e_t^k=v_o^T tan⁡h (W_e [h_{t-1};S_{t-1} ]+U_e x^k+b_e), (12) etk=voTtanh(We[ht1;St1]+Uexk+be),(12

α t k = e x p ( e t k ) ∑ i = 1 N e e x p ( e t i ) ( 13 ) α_t^k=\frac{exp(e_t^k)}{\sum_{i=1}^{N_e}{exp(e_t^i)}} (13) αtk=i=1Neexp(eti)exp(etk)13
在这里, v e , b e ∈ R T × 2 p , W e ∈ R T × T 并且 U o ∈ R T × T v_e,b_e∈R^{T×2p},W_e∈R^{T×T}并且U_o∈R^{T×T} vebeRT×2pWeRT×T并且UoRT×T是学习参数。通过将softmax函数应用于 e t k ,我们获得了时间间隔 t 处第 k 个环境数据的归一化注意力权重 α t k e_t^k,我们获得了时间间隔t处第k个环境数据的归一化注意力权重α_t^k etk,我们获得了时间间隔t处第k个环境数据的归一化注意力权重αtk。对于所有类型的环境数据输入,通过跨域注意力权重,可以自适应地获取时间间隔t的环境分量的输出向量:

X ^ t e n v = ( α t 1 x t 1 , ⋯ α t k x t k , ⋯ α t N e x t N e ) T ( 14 ) \hat{X} _t^{env}=(α_t^1 x_t^1,⋯α_t^k x_t^k,⋯α_t^{N_e } x_t^{N_e })^T (14) X^tenv=(αt1xt1αtkxtkαtNextNe)T14
最后,对于编码器LSTM,我们自适应地连接上述不同组件的输出向量,提取跨域注意机制的最终输出向量为:
X ^ t = [ X ^ t e n v , X ^ t o c c ] ,( 15 ) \hat{X} _t=[\hat{X} _t^{env},\hat{X} _t^{occ} ], (15) X^t=[X^tenv,X^tocc],(15
其中, X ^ t ∈ R T \hat{X} _t∈R^T X^tRT。我们将最终输出向量 X ^ t \hat{X} _t X^t输入编码器LSTM作为时间间隔t的新输入。因此,在等式中,编码器LSTM的隐藏状态公式3中的更新日期为:
h t = f e ( h t − 1 , X ^ t ) ( 16 ) h_t=f_{e} (h_{t-1},\hat{X} _t) (16) ht=fe(ht1X^t)16
其中, f e f_e fe是在等式中描述的编码器LSTM网络公式4至公式 8.

利用temporal attention的encoder

具体来说,在计算编码器在时间间隔t处的隐藏状态的注意向量时,时间注意机制是指解码器LSTM之前的隐藏状态KaTeX parse error: Expected group after '^' at position 8: h_{t-1}^̲'和之前的细胞状态KaTeX parse error: Expected group after '^' at position 8: s_{t-1}^̲'为:

μ t i = v d T t a n ⁡ h ( W d [ h t − 1 ′ ; S t − 1 ′ ] + U d h i + b d ) , 1 ≤ i ≤ T ,( 17 ) μ_t^i=v_d^T tan⁡h (W_d [h_{t-1}^{'};S_{t-1}^{'}]+U_d h_i+b_d), 1≤i≤T, (17) μti=vdTtanh(Wd[ht1;St1]+Udhi+bd),1iT,(17

γ t i = e x p ( μ t i ) ∑ i = 1 T e x p ( μ t i ) ( 18 ) γ_t^i=\frac{exp(μ_t^i)}{\sum_{i=1}^{T}{exp(μ_t^i)}} (18) γti=i=1Texp(μti)exp(μti)18
其中[∙]是一个链接操作; v d , b d ∈ R p , W d ∈ R p × 2 q 和 U d ∈ R P × P v_d,b_d∈R^p,W_d∈R^{p×2q}和U_d∈R^{P×P} vdbdRpWdRp×2qUdRP×P是学习参数。通过softmax层,计算时间注意力权重 γ t i γ_t^i γti在时间间隔t时的第i个编码器隐藏状态。由于输入序列的分量在时间上映射到每个编码器,我们计算上下文向量 c t c_t ct作为所有编码器隐藏状态的加权和如下所示:

c t = ∑ i = 1 T γ t i h i ( 19 ) c_t=\sum_{i=1}^{T}{γ_t^i} h_i(19) ct=i=1Tγtihi(19)
为了获取交通量数据中的动态时间相关性,我们进一步将上下文向量与 y = ( y 1 , ⋯ , y t , ⋯ , y T − 1 ) y=(y_1,⋯,y_t,⋯,y_{T-1}) y=(y1,,yt,,yT1)组合起来,如下所示:
y ^ t − 1 = w ^ [ y t − 1 ; c t − 1 ] + b ~ , ( 20 ) \hat{y}_{t-1}=\hat{w} [y_{t-1};c_{t-1} ]+\tilde{b} , (20) y^t1=w^[yt1;ct1]+b~,(20)

h t ′ = f d ( h t − 1 ′ , y ^ t − 1 ) ( 21 ) h_t^{'}=f_{d} (h_{t-1}^{'},\hat{y}_{t-1}) (21) ht=fd(ht1y^t1)21
其中 f d f_d fd是一个基于LSTM的递归神经网络作为解码器, w ^ ∈ R p + 1 \hat{w}∈R^{p+1} w^Rp+1 b ~ ∈ R \tilde{b}∈R b~R是是将连接结果映射到解码器输入的大小的参数。由于解码器中的LSTM单元的结构与编码器完全相同(称为公式4到8),我们省略了 f d f_d fd的更新过程。最后,基于注意力机制的递归神经网络将上下文向量 c t c_t ct与解码器隐藏状态 h T ′ h_T^{'} hT连接起来,预测时间间隔T的流量如下所示:
y ^ T = v y T ( W y [ c T ; h T ′ ] + b y ) + b ( 22 ) \hat{y}_T=v_y^T (W_y [c_T;h_T^{'} ]+b_y)+b (22) y^T=vyT(Wy[cT;hT]+by)+b(22)
其中 [ c T ; h T ′ ] ∈ R p + 1 [c_T;h_T^{'} ]∈R^{p+1} [cT;hT]Rp+1是链接操作,参数 W y ∈ R q × ( p + q ) 和 b y ∈ R q W_y∈R^{q×(p+q)}和b_y∈R^q WyRq×(p+q)byRq一起映射级联到解码器隐藏状态的大小,输出由权重为 v y ∈ R q 和 b y ∈ R v_y∈R^q和b_y∈R vyRqbyR组成的映射函数。

实验

实验设置

运行环境:Linux服务器,8 Intel® Xeon® CPU E5-2680 v4 @ 2.40GHZ; 256GB RAM; 4 NVIDIA P100 GPUs。

数据集:

我们从附近的道路中选择交通数据和相关的建筑传感数据作为BuildSenSys模型的训练输入数据。对于交通数据,我们从新南威尔士州的道路和海事服务部门的官方网站上收集交通量计数数据。交通量计数数据由永久和临时的路边收集设备生成,每隔一小时监测每条道路上通过的车辆数量。我们收集了该建筑附近四条道路的12个月交通量数据(从2018年1月1日至2018年12月31日)。对于建筑传感数据,我们收集了建筑占用率、建筑环境数据、户外环境数据三类数据。
模型相关设置:对于模型训练,BuilldSenSys的可调超参数包括时间窗口L(即输入数据以小时为单位的长度)、预测窗口的长度τ和编码器/解码器中隐藏状态的大小(分别用h_a和h_b表示)。具体来说,对于LSTM、Seq2Seq、Seq2Seqw/attn和BuilldSenSys模型, h a 和 h b h_a和h_b hahb分别在32、64、126、256、512、L、4、6、12、18、24到48(小时)。预测窗口τ表示未来交通预测的天数。在培训阶段中,批量大小、学习率和辍学率分别设置为256、0.001和0.2。对于所有的建筑感知数据和交通量数据,我们按时间顺序将数据集分为训练集(70%)、验证集(10%)和测试集(20%)。

基准方法:

​ HA:历史平均模型,它通过平均所有相应时间间隔的历史值来预测交通;
​ ARIMA:自回归积分移动平均线模型,是预测未来时间序列的经典模型;
​ VAR:向量自回归模型是对单变量自回归模型的扩展,已广泛应用于多元时间序列预测;
​ LWR:局部加权线性回归模型是一个非参数模型,它围绕感兴趣的点进行回归;
​ LSTM:长短期记忆(LSTM)网络是递归神经网络的一种变化,旨在避免消失的梯度问题;
​ Seq2Seq:基于编码-解码器结构和递归神经网络的序列到序列模型,由编码器、上下文向量和解码器三部分组成;
​ Seq2Seqw/attn:具有时间注意机制的序列到序列模型。

实验结果及分析

为了评估预测精度,我们采用了三个广泛使用的评价指标,即平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)。
我们通过比较四种不同类型的道路(次要公路)、B(主要公路)、C(主要街道)的预测结果,来评估BuildSenSys的总体预测精度。图9显示了12天内的预测交通量和地面真实情况。如图2a到图2d所示,预测结果非常接近地面真相。
在这里插入图片描述

图2
从图2中我们可以看出(1)BuildSenSys可以成功地捕获在重用构建数据进行交通量预测时的跨域相关性和时间依赖性。一段路段与建筑物之间的距离会显著影响预测精度。 我们通过使用三种评估指标与7种基线方法进行比较,进一步量化了BuildSenSys的性能并在四个路段上进行了评价实验。图3给出了BuildSenSys和所有基线方法之间的性能比较。

在这里插入图片描述

图3
与基于RNN的基线方法相比,BuildSenSys联合利用跨领域注意和时间注意来自适应地学习跨领域、时变和非线性的建筑-交通相关性。因此,我们说BuildSenSys在预测附近的交通量方面优于所有的基线方法,准确率提高了高达65.3%(例如,2.2%的MAPE)。

我们进一步评估了RNN网络中的参数对构建系统性能的影响,因为构建系统是基于RNN的。这些参数包括编码器( h a h_a ha)和解码器( h b h_b hb)中的隐藏状态的大小、输入时间窗口(L)和预测窗口(τ)的长度

在这里插入图片描述

图4

在这里插入图片描述

图5

在这里插入图片描述

图6
实验结果表明:(1)如图4所示,随着隐藏状态尺寸的增大,BuildSenSys的预测精度大致有所提高。总体来说,BuildSenSys获得了最好的预测结果;(2)如图5所示,所有基于RNN的方法的预测精度都随着时间窗长度的延长而增加。同时,当时间窗太大时,基于RNN的方法的性能也会下降,例如L = 48。当L = 6,RMSE=31.7,MAE=24,MAPE=0.019时,BuildSenSys获得了最好的性能。(3)如图6所示,BuildSenSys可以通过重用构建数据来实现高精度的稳定预测。 为了评估每个组件对整体性能的影响,我们对BuildSenSys进行了消融研究如下。

在这里插入图片描述

图7

在这里插入图片描述

图8
实验结果表明:(1)如图7所示,基于构建数据的跨领域学习可以有效地提高整体性能。此外,建筑占用率数据对跨域交通预测的贡献要高于建筑环境数据。(2)如图8所示,较长的输入可能在捕获建筑-交通相关性和时间相关性方面造成更大的困难。综上所述,以上结果表明,跨域学习中的各成分对提高BuildSenSys的预测精度都有贡献。具体来说,在重用建筑数据来预测附近的交通量方面,占用部分和环境部分是互补的。此外,在构建数据的跨领域学习中,联合利用跨领域注意和时间注意具有重要意义。每种注意机制对预测精度的提高都有其独特的贡献。 我们也分别分析了所提出的交通预测模型的注意权重。(1)Cross-domain attention: 如图9 a所示,每种类型的建筑感知数据对交通预测都有自己的贡献,而建筑占用数据在所有预测步骤中具有最高的关注权重。同时,建筑占用数据和环境数据在重用建筑数据进行交通传感和预测方面是互补的。

在这里插入图片描述

图9
Temporal attention:如图9 b所示,BuildSenSys中的时间注意机制更关注最近6小时的输入数据。同时,由于所有的时间注意权重之和为1,输入时间窗口较长最近6小时的注意权重更少。 6.我们又针对基线方法与工作日数据和周末数据的关系、与基于不同数据源的最先进方法的比较验证BuildSenSys的优越性。

在这里插入图片描述

图10
从实验结果来看:如图10所示,(1)与Seq2Seq模型相比,工作日模型和周末模型都能提高一定程度的预测精度。然而,联合预测结果仍然不令人满意,其精度甚至低于工作日模型。同时,通过时间注意机制,提出的BuildSenSys可以动态学习历史数据对预测目标的影响,从而优于工作日模型和周末模型。(2)即使与DCRNN相比,BuildSenSys的性能也最好的。

基准实验涉及的论文

Fan X, Xiang C, Chen C, et al. BuildSenSys: Reusing building sensing data for traffic prediction with cross-domain learning[J]. IEEE Transactions on Mobile Computing, 2020, 20(6): 2154-2171.
方法组件涉及的论文
“EIF research data interface,” https://eif-research.feit.uts.edu.au/,accessed August, 2019.
Roads and N. Maritime Services, “Roads and maritime services collects traffific volume information from roadside traffific collection devices across the nsw road network,” https://www.rms.nsw.gov.au/about/corporate-publications/statistics/traffific-volumes/index.html, accessed August, 2019.
F. C. Sangoboye and M. B. Kjærgaard, “Plcount: A probabilistic fusion algorithm for accurately estimating occupancy from 3d camera counts,” in Proceedings of the 3rd ACM International Conference on Systems for Energy-Effificient Built Environments. ACM,2016, pp. 147–156.
A. Koesdwiady, R. Soua, and F. Karray, “Improving traffific flow prediction with weather information in connected cars: a deep learning approach,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9508–9517, 2016.

相关工作涉及的论文

D. Minoli, K. Sohraby, and B. Occhiogrosso, “Iot considerations, requirements, and architectures for smart buildingsłenergy optimization and next-generation building management systems,” IEEE Internet of Things Journal, vol. 4, no. 1, pp. 269–283, 2017.
Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu, “Mining road network correlation for traffific estimation via compressive sensing,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 7, pp. 1880–1893, 2016.
C. Hu, W. Bao, D. Wang, Y. Qian, M. Zheng, and S. Wang, “stube+: an iot communication sharing architecture for smart after-sales maintenance in buildings,” ACM Transactions on Sensor Networks (TOSN), vol. 14, no. 3-4, p. 29, 2018.
K. Nellore and G. P. Hancke, “A survey on urban traffific management system using wireless sensor networks,” Sensors, vol. 16, no. 2, p. 157, 2016.
X. Kong, X. Song, F. Xia, H. Guo, J. Wang, and A. Tolba, “Lotad: long-term traffific anomaly detection based on crowdsourced bus trajectory data,” World Wide Web, vol. 21, no. 3, pp. 825–847, 2018.
Z. Liu, P. Zhou, Z. Li, and M. Li, “Think like a graph: Realtime traffific estimation at city-scale,” IEEE Transactions on Mobile Computing, 2018.
Y. Cui, B. Jin, F. Zhang, B. Han, and D. Zhang, “Mining spatialtemporal correlation of sensory data for estimating traffific volumes on highways,” in Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. ACM, 2017, pp. 343–352.
A. Janecek, D. Valerio, K. A. Hummel, F. Ricciato, and H. Hlavacs, “The cellular network as a sensor: From mobile phone data to real-time road traffific monitoring,” IEEE transactions on intelligent transportation systems, vol. 16, no. 5, pp. 2551–2572, 2015.
C. Costa, G. Chatzimilioudis, D. Zeinalipour-Yazti, and M. F. Mokbel, “Towards real-time road traffific analytics using telco big data,” in Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics. ACM, 2017, p. 5.
C. Meng, X. Yi, L. Su, J. Gao, and Y. Zheng, “City-wide traffific volume inference with loop detector data and taxi trajectories,” in Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2017, p. 1.
A. Sarker, H. Shen, and J. A. Stankovic, “Morp: data-driven multi objective route planning and optimization for electric vehicles,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, p. 162, 2018.
D. Pavlyuk, “Short-term traffific forecasting using multivariate autoregressive models,” Procedia Engineering, vol. 178, pp. 57–66, 2017.
Y. Lv, Y. Duan, W. Kang, Z. Li, F.-Y. Wang et al., “Traffific flflow prediction with big data: A deep learning approach.” IEEE Trans. Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.
Z. Liu, Z. Li, K. Wu, and M. Li, “Urban traffific prediction from mobility data using deep learning,” IEEE Network, vol. 32, no. 4, pp. 40–46, 2018.
J. Xu, R. Rahmatizadeh, L. Boloni, and D. Turgut, “Real-time prediction of taxi demand using recurrent neural networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 8, pp. 2572–2581, 2018.
Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “Lstm network: a deep learning approach for short-term traffific forecast,” IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, 2017.
Y. Tian, K. Zhang, J. Li, X. Lin, and B. Yang, “Lstm-based traffific flow prediction with missing data,” Neurocomputing, vol. 318, pp. 297–305, 2018.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, 2017, pp. 5998– 6008.
H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatialtemporal similarity: A deep learning framework for traffific prediction,” in AAAI Conference on Artifificial Intelligence, 2019.

后续研究涉及的论文

总结

亮点

对基于多源真实数据集的构建-交通相关性进行了广泛的实验分析。揭示了构建数据与交通流量数据具有很强的相关性。
提出了一种基于跨域学习的RNN,具有跨域和时间注意机制,联合提取构建-交通相关性,以实现准确的交通预测。
实现了一个建筑传感器系统的原型系统,并进行了广泛的实验。
实验设置考虑因素丰富全面,实验结果分析详细。

[不足]

数据范围还可以再扩大一些,会更有说服力。

[启发]

对于BuildSenSys模型而言,哪种建筑适合准确的交通感知和预测,通过重用建筑传感数据,什么样的真实应用可以从跨域交通预测中获益任然可以进行进一步的探究。
循环神经网络RNN领域的发展突飞猛进,并且已经相对成熟。本文提出的BuildSenSys模型结合了RNN、物联网、跨领域学习,可以在已有研究的基础上再融合其他模型;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值