【经典论文解读】YOLO 目标检测

本文深入解析YOLO(You Only Look Once)目标检测方法,包括思路流程、网络结构、边界框编码、损失函数、NMS非极大值抑制、训练过程及模型优缺点。通过YOLO,图像中的物体被边界框包围并分类,实现高效实时的目标检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

YOLO是一种目标检测方法,它的输入是整张图片,当检测到目标物体时用边界框圈起来,同时给该目标物体一个类别;边界框由中心位置、宽、高等来表示的;它的输出是n个物体的检测信息,每个物体的信息包括:中心位置(x,y)、高(h)、宽(w)、类别。

YOLO的全称是you only look once,指只需要浏览一次就可以识别出图中的物体的类别和位置;它是通过归回的方式计算和优化边界框和类别。

论文地址:You Only Look Once: Unified, Real-Time Object Detection

开源代码:https://github.com/pjreddie/darknet

一、思路流程

  1. 输入一张图像,把图像划分为7*7的网格;此时图像由49个网格组成的。
  2. 对于每个网络,模型都预测2个边界框;每个边界框包含的信息:置信度、中心坐标、宽、高等。此时图像有7*7*2 = 98个边界框。
  3. 设置一个阈值,去除“置信度”过低的边界框;然后通过非极大值抑制来去除冗余的边界框。

<

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值