【论文解读】SCNN 用于交通场景理解的空间CNN

SCNN是一种特殊设计的CNN,通过逐片卷积传递空间信息,提高学习空间关系的效率,尤其适用于车道线检测和语义分割。相比传统CNN,SCNN在计算效率和信息传播方面具有优势,且易于融入其他深度网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

Spatial CNN,这里的Spatial不是指Spatial Convolution,而是通过特殊设计的CNN架构传递空间信息,更有效地学习空间关系,简称SCNN;它提出了一种新的神经网络结构用于提取特征。

传统的网络结构是卷积层接收来自前一层的输入,应用卷积运算和激活函数,并将结果发送到下一层;该过程按顺序结构,一层一层传递下去。但SCNN是先对这部分输入特征进切片,再按照下、上、右、左四种顺序进行卷积。

比如:一个三维的特征,相当于一个立方体,先进行横切片,分别进下、上顺序进行卷积。再对得到特征,进行竖切片,分别进行右、左顺序进行卷积。

SCNN简介

SCNN将传统的深层逐层(layer-by-layer)卷积推广到特征映射中的逐片(slice-by-slice࿰

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值