构建数据的归一化和标准化(某金融数据集)

本文探讨了数据归一化在金融数据集中的应用,通过模型评估发现,归一化提升了LR模型的效果,但对XGBoost影响较小,而对于SVM,归一化是改善模型性能的关键。在LR模型中,未归一化的l2惩罚函数导致训练和测试集的AUC为0.5,而使用l1惩罚函数时,归一化的影响力减小。
摘要由CSDN通过智能技术生成

导入各种包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,roc_auc_score,roc_curve,auc
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.linear_model import LogisticRegression
from  sklearn import svm
from sklearn.tree import DecisionTreeClassifier

导入数据

data=pd.read_csv('./data.csv',index_col=0,encoding='gbk')

数据理解

#单独提取出y列标签,和其余的88列标记为x
y=data['status']
X=data.drop(
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值