不同的贝叶斯假设数据的分布不同。
暂时全部使用默认参数
高斯朴素贝叶斯
"""
多项式朴素贝叶斯分类器适用于具有离散特征的分类(例如,用于文本分类的字数)。
多项分布通常需要整数特征计数。然而,在实践中,诸如tf-idf的分数计数也可以起作用。
"""
from sklearn import datasets
iris = datasets.load_iris()
from sklearn.naive_bayes import GaussianNB
gnb=GaussianNB()
gnb.fit(iris.data,iris.target)
y_pred = gnb.predict(iris.data)
print('number of mislabeled points out of a total %d points : %d'%(iris.data.shape[0],(iris.target != y_pred).sum()

本文深入探讨了sklearn库中的朴素贝叶斯分类器,包括高斯朴素贝叶斯、多项式朴素贝叶斯、补充朴素贝叶斯和伯努利朴素贝叶斯。每个模型都基于不同的数据分布假设,并且在默认参数设置下进行了讨论。
最低0.47元/天 解锁文章
204

被折叠的 条评论
为什么被折叠?



