打开栅格数据的正确方式

打开栅格数据的正确方式

下面的例子打开一副GeoTIFF影像,输出了影像的一些信息,然后遍历了所有波段,输出波段的一些信息

import gdal

# 打开栅格数据集
ds = gdal.Open('example.tif')

# 获得栅格数据的一些重要信息
print(f'投影信息:{ds.GetProjection()}')
print(f'栅格波段数:{ds.RasterCount}')
print(f'栅格列数(宽度):{ds.RasterXSize}')
print(f'栅格行数(高度):{ds.RasterYSize}')

# 获取数据集的元数据信息
metadata = ds.GetMetadata_Dict()
for key, value in metadata.items():
    print(f'{key} -> {value}')


for b in range(ds.RasterCount):
    # 注意GDAL中的band计数是从1开始的
    band = ds.GetRasterBand(b + 1)
    # 波段数据的一些信息
    print(f'数据类型:{gdal.GetDataTypeName(band.DataType)}')  # DataType属性返回的是数字
    print(f'NoData值:{band.GetNoDataValue()}')  # 很多影像都是NoData,我们在做数据处理时要特别对待
    print(f'统计值(最大值最小值):{band.ComputeRasterMinMax()}')  # 有些数据本身就存储了统计信息,有些数据没有需要计算

# 关闭数据集
ds = None

输出如下:

投影信息:PROJCS["WGS 84 / UTM zone 49N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",111],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32649"]]
栅格波段数:3
栅格列数(宽度):4800
栅格行数(高度):4800
AREA_OR_POINT -> Area
数据类型:Int16
NoData值:-28672.0
统计值(最大值最小值):(-435.0, 6134.0)
数据类型:Int16
NoData值:-28672.0
统计值(最大值最小值):(-468.0, 6265.0)
数据类型:Int16
NoData值:-28672.0
统计值(最大值最小值):(21.0, 7267.0)

 

如何将Dataset转为Numpy的ndarray
当我们得到Band对象以后,如果按照GDAL的C/C++接口惯例,我们可以使用WriteRaster()方法进行数据写入(C/C++接口是WriteBlock()),但是在Python中我们有很强大的ndarray对象,所以我们一般是将Band对象中存储的数据转为ndarray进行处理以后,然后再写回去。

下面介绍几种转换的方法:

在Dataset级别进行转换,转换结果是一个三维数组,第一个维度是波段数

在Band级别进行转换,转换的结果是一个二维数据

使用gdal_array模块中的LoadFile()函数直接进行(相当于第一种转换)
 

import gdal

# 打开栅格数据集
ds = gdal.Open('example.tif')
# 在数据集层面转换
image = ds.ReadAsArray()

print(f'数据的尺寸:{image.shape}')
# 输出结果为:数据的尺寸:(3, 4800, 4800)
# 这说明ReadAsArray方法将每个波段都转换为了一个二维数组

# 获得第一个波段的数据
band1 = image[0]

# 在波段层面的转换
for b in range(ds.RasterCount):
    # 注意GDAL中的band计数是从1开始的
    band = ds.GetRasterBand(b + 1)
    band = band.ReadAsArray()
    print(f'波段大小:{band.shape}')

# 关闭数据集
ds = None

输出结果:

数据的尺寸:(3, 4800, 4800)
波段大小:(4800, 4800)
波段大小:(4800, 4800)
波段大小:(4800, 4800)

使用gdal_array模块

from osgeo import gdal_array
# gdal_array模块
image = gdal_array.LoadFile('example.tif')
print(f'数据的尺寸:{image.shape}')

 

 在GDAL中使用Python的异常对象

import gdal
import sys

# 允许GDAL跑出Python异常
gdal.UseExceptions()

try:
    ds = gdal.Open('example.tif')
except (FileNotFoundError, RuntimeError) as e:
    print('文件打开失败!')
    print(e)
    sys.exit(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值