ML-逻辑回归

该内容介绍了逻辑回归在分类问题中的应用,包括sigmoid函数、决策边界、代价函数及梯度下降法。还讨论了多分类问题的解决策略以及正则化的逻辑回归。此外,提到了查准率、查全率和F1值作为评估分类模型性能的指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ML-逻辑回归

参考视频:https://www.bilibili.com/video/BV1Rt411q7WJ

一、逻辑回归

逻辑回归解决的问题是分类问题。

Sigmoid/Logistic Function

我们定义逻辑回归的预测函数为 h θ ( x ) = g ( θ T x ) h_\theta(x)=g(\theta^Tx) hθ(x)=g(θTx),其中 g ( x ) g(x) g(x)函数是 s i g m o i d sigmoid sigmoid函数。

在这里插入图片描述

s i g m o i d sigmoid sigmoid函数图像

在这里插入图片描述

0.5可以作为分类的边界:
z ≥ 0 z≥0 z0的时候 g ( z ) ≥ 0.5 g(z)≥0.5 g(z)0.5,当 θ T X ≥ 0 \theta^TX≥0 θTX0的时候 g ( θ T X ) ≥ 0.5 g(\theta^TX)≥0.5 g(θTX)0.5
z ≤ 0 z≤0 z0的时候 g ( z ) ≤ 0.5 g(z)≤0.5 g(z)0.5,当 θ T X ≤ 0 \theta^TX≤0 θTX0的时候 g ( θ T X ) ≤ 0.5 g(\theta^TX)≤0.5 g(θTX)0.5

决策边界

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代价函数

在这里插入图片描述

y = 1 y = 1 y=1 h θ ( x ) = 1 ℎ_\theta(x)= 1 hθ(x)=1时, c o s t = 0 cost=0 cost=0
y = 1 y = 1 y=1 h θ ( x ) = 0 ℎ_\theta(x)= 0 hθ(x)=0时, c o s t = ∞ cost=∞ cost=</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值