ML-逻辑回归
一、逻辑回归
逻辑回归解决的问题是分类问题。
Sigmoid/Logistic Function
我们定义逻辑回归的预测函数为 h θ ( x ) = g ( θ T x ) h_\theta(x)=g(\theta^Tx) hθ(x)=g(θTx),其中 g ( x ) g(x) g(x)函数是 s i g m o i d sigmoid sigmoid函数。
s i g m o i d sigmoid sigmoid函数图像
0.5可以作为分类的边界:
当 z ≥ 0 z≥0 z≥0的时候 g ( z ) ≥ 0.5 g(z)≥0.5 g(z)≥0.5,当 θ T X ≥ 0 \theta^TX≥0 θTX≥0的时候 g ( θ T X ) ≥ 0.5 g(\theta^TX)≥0.5 g(θTX)≥0.5;
当 z ≤ 0 z≤0 z≤0的时候 g ( z ) ≤ 0.5 g(z)≤0.5 g(z)≤0.5,当 θ T X ≤ 0 \theta^TX≤0 θTX≤0的时候 g ( θ T X ) ≤ 0.5 g(\theta^TX)≤0.5 g(θTX)≤0.5。
决策边界
代价函数
当 y = 1 y = 1 y=1, h θ ( x ) = 1 ℎ_\theta(x)= 1 hθ(x)=1时, c o s t = 0 cost=0 cost=0
当 y = 1 y = 1 y=1, h θ ( x ) = 0 ℎ_\theta(x)= 0 hθ(x)=0时, c o s t = ∞ cost=∞ cost=∞</