用python将时间序列信号或一维数组转化成图像的几种方法
深度学习在计算机视觉有了非常广泛的应用,视觉图像数据为二维数据,而在故障诊断领域的数据,来自于传感器的采集,属于典型的一维时间序列,因而绝大多数问题可以抽象成时间序列分类(TSC)问题。若将时间序列或一维数组转化为图像,再应用深度学习的模型做分析,是一种很不错的方法,且这种方法在很多论文中已有实践。
文章目录
一、利用PIL库
话不多说上代码。
import numpy as np
from PIL import Image
'''
读取时间序列的数据
怎么读取需要你自己写
'''
#把数据转成array形式
TSC = np.array(TSC)
#将长为L的时间序列转成m*n的矩阵, L = m*n
result = idx.reshape((m, n))
#矩阵归一化,调用Image
result = (result - np.min(result)) / (np.max(result) - np.min(result))
im = Image.fromarray(result*255.0)
im.convert('L').save("1.jpg",format = 'jpeg')
这是我得到的128*256大小的灰度图
二、利用CV库
看这篇博客,这个方法和利用PIL库有异曲同工之处