卷积、平均池化、最大池化

本文介绍了卷积和池化的概念及其在图像处理中的作用。卷积通过加权求和来消除噪声和增强特征,而池化则用于减少特征,降低计算复杂度,同时保持图像的某些不变性,如平移不变性。平均池化保留背景信息,最大池化则侧重于保留纹理信息。这些操作在深度学习模型中尤其重要。
摘要由CSDN通过智能技术生成

卷积、平均池化、最大池化_宁静致远*的博客-CSDN博客_平均卷积参考https://blog.csdn.net/cqhblg/article/details/89074292https://blog.csdn.net/sunflower_sara/article/details/813220481 卷积通俗点说:卷积在图像处理中的应用就是用一个模式矩阵和原图像矩阵相乘,得到一个新的矩阵作为卷积结果。(核:指一组权重的集合,它会应用在源图像的一...https://blog.csdn.net/weixin_40522801/article/details/105632405

1 卷积

卷积是一种积分运算,用来求两个曲线重叠区域面积。可以看作加权求和,可以用来消除噪声、特征增强。 把一个点的像素值用它周围的点的像素值的加权平均代替。

2 pooling

pooling的结果是使得特征减少,参数减少,但pooling的目的并不仅在于此。pooling目的是为了保持某种不变性(旋转、平移、伸缩等。

根据相关理论,特征提取的误差主要来自两个方面:

  • 邻域大小受限造成的估计值方差增大
  • 卷积层参数误差造成估计均值的偏移

2.1 平均池化

max-pooling,即对邻域内特征点取最大。mean-pooling能减小第一种误差(邻域大小受限造成的估计值方差增大),更多的保留图像的背景信息,

2.2 最大池化

max-pooling,即对邻域内特征点取最大。max-pooling能减小第二种误差(卷积层参数误差造成估计均值的偏移),更多的保留纹理信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值