1 卷积
卷积是一种积分运算,用来求两个曲线重叠区域面积。可以看作加权求和,可以用来消除噪声、特征增强。 把一个点的像素值用它周围的点的像素值的加权平均代替。
2 pooling
pooling的结果是使得特征减少,参数减少,但pooling的目的并不仅在于此。pooling目的是为了保持某种不变性(旋转、平移、伸缩等。
根据相关理论,特征提取的误差主要来自两个方面:
- 邻域大小受限造成的估计值方差增大;
- 卷积层参数误差造成估计均值的偏移。
2.1 平均池化
max-pooling,即对邻域内特征点取最大。mean-pooling能减小第一种误差(邻域大小受限造成的估计值方差增大),更多的保留图像的背景信息,
2.2 最大池化
max-pooling,即对邻域内特征点取最大。max-pooling能减小第二种误差(卷积层参数误差造成估计均值的偏移),更多的保留纹理信息。