【AI知识点】均值池化(Mean Pooling)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


均值池化(Mean Pooling) 是一种常用的神经网络操作,特别是在自然语言处理和计算机视觉等任务中,用于对一组向量进行聚合,生成一个代表该组向量的平均表示。它的基本思想是将多个向量的数值进行平均,从而得到一个汇总的、简洁的表示。

均值池化的工作原理:

假设我们有一个输入的向量序列 { v 1 , v 2 , … , v n } \{v_1, v_2, \dots, v_n\} { v1,v2,,vn},其中每个向量 v i v_i vi 可能代表一个词或句子的表示。在均值池化中,我们计算这些向量的逐元素平均值,公式如下:

v mean = 1 n ∑ i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值