【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】
均值池化(Mean Pooling) 是一种常用的神经网络操作,特别是在自然语言处理和计算机视觉等任务中,用于对一组向量进行聚合,生成一个代表该组向量的平均表示。它的基本思想是将多个向量的数值进行平均,从而得到一个汇总的、简洁的表示。
均值池化的工作原理:
假设我们有一个输入的向量序列 { v 1 , v 2 , … , v n } \{v_1, v_2, \dots, v_n\} {
v1,v2,…,vn},其中每个向量 v i v_i vi 可能代表一个词或句子的表示。在均值池化中,我们计算这些向量的逐元素平均值,公式如下:
v mean = 1 n ∑ i