[ICLR2021] ViT模型的分析与实现

ViT模型将transformer模型的encoder应用在视觉任务上,取得了很好的效果。对于其基于timm库的实现进行一些注释和学习
timm
在这里插入图片描述

一些重要模块的解读:
PatchEmbed模块:

class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = (img_size, img_size)
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."

        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = self.proj(x).flatten(2).transpose(1, 2) #
        x = self.norm(x)
        return x

该模块将输入的图片转化为token的形式,通常x的输入形式为[B,C,H,W],通过这里的操作可以将其转化为[B, HW, C]的形式,例如[B,3,224,224]->[B,196,768]因为每个patch的大小为16*16 所有共有224/16=14 14 * 14=196个token。

Attention模块

class Attention(nn.Module):
    def __init__(self,
                 dim,   # 输入token的dim
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_ratio=0.,
                 proj_drop_ratio=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x):
        # [batch_size, num_patches + 1, total_embed_dim]
        B, N, C = x.shape

        # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
        # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
        # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)  
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

输入:[B,Token_number,Embeding_dim]
输出:[B,Token_number,Embeding_dim]
该模块是ViT模型的核心模块之一,用于计算注意力。传入的输入为经过patch化后的token序列。首先通过shape方法获得其三个形状参数,B为batchsize,N为token的数量,C对应嵌入的维度。在初始化中
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)这样一个层用于产生q,k,v三个矩阵。
在forward函数中:
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)通过这样的方式将其按照多头注意力的方法进行切分,qkv对应的维度为[batch_size, num_patches + 1, 3 * total_embed_dim]再通过reshape操作按照不同的头进行分开,之后的形式为[batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]之后是转置操作,将q,k,v三者进行拆分。
然后再根据注意力机制的计算公式进行计算,对应在这里就是矩阵的乘法(在后两个维度上进行,也就是在每个head上计算)attn的形状为[B,Num_heads,Token_number,Token_number],最后通过和v的运算,这样就得到了和输入一致的维度。

《自适应通用广义PageRank图神经网络》是在ICLR2021中发布的一篇论文。这篇论文提出了一种新的图神经网络模型,称为自适应通用广义PageRank图神经网络。 传统的图神经网络通常使用节点和边的特征来进行节点分类和链接预测等任务,但在处理大规模图时存在计算复杂度高和难以处理隐含图结构的问题。为了解决这些问题,这篇论文引入了PageRank算法和广义反向传播法,在保留图结构信息的同时有效地处理大规模图数据。 这个模型的核心思想是将PageRank算法和图神经网络相结合,通过模拟随机游走过程对节点和边进行随机采样,并利用广义反向传播法将PageRank值传播给相邻的节点。通过这种方式,网络可以在保留图结构信息的同时,有效地进行节点嵌入和预测任务。 另外,这篇论文还提出了自适应的机制,允许网络根据不同的任务和数据集调整PageRank算法的参数。通过自适应机制,网络可以更好地适应不同的图结构和特征分布,提高模型的泛化能力。 实验证明,这个自适应通用广义PageRank图神经网络在节点分类、链路预测和社区检测等任务上都取得了比较好的效果。与传统的模型相比,该模型在保留图结构信息的同时,具有更高的计算效率和更好的预测能力。 总的来说,这篇论文提出了一种新颖的图神经网络模型,通过将PageRank算法与图神经网络相结合,可以有效地处理大规模图数据,并通过自适应机制适应不同的任务和数据集。这个模型在图神经网络领域具有一定的研究和应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值