高斯分布(Gaussian distribution),也被称为正态分布(Normal distribution),是一种在自然界和社会中广泛存在的连续型概率分布。高斯分布的均值(μ)和方差(σ^2)是描述其特性的两个重要参数,它们之间没有直接的数学关系,但各自具有独立的含义和重要性。
均值(μ)代表了分布的中心位置,也就是随机变量取值的“平均”水平。在高斯分布中,均值是概率密度函数曲线的对称轴,也是分布曲线的最高点所在的位置。
方差(σ^2)则描述了随机变量取值与均值之间的偏离程度,即分布的“宽度”或“离散程度”。方差越大,说明随机变量取值越离散,分布曲线越扁平;方差越小,说明随机变量取值越集中,分布曲线越陡峭。
均值和方差是高斯分布的两个独立参数,它们之间没有直接的数学关系,可以独立地变化。例如,你可以有一个均值为0、方差为1的标准正态分布,也可以有一个均值为10、方差为4的非标准正态分布。这些不同的均值和方差组合会产生不同形状和位置的高斯分布曲线。