利用先验知识来约束和引导图像重建过程

一、低秩约束的图像非盲去模糊

论文题目:Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation

1、退化过程

非盲去模糊为模糊核已知。退化过程可以表示为:
在这里插入图片描述
其中x表示target,k表示模糊核,y为退化的模糊图像。
转到频域可以表示为:
在这里插入图片描述

2、非盲去模糊

去模糊的过程,实际是在求模糊核k的伪逆矩阵k*。
在这里插入图片描述
在这里插入图片描述
如图所示,当模糊核为15x15时,伪逆矩阵为150x150,甚至更大,这样会导致计算量非常的大。对于这个大矩阵,利用SVD进行分解,得到特征向量和特征矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值