Halcon 深度学习(三):缺陷检测


前言

最近学习深度学习时的一些总结和看法,参照深度学习的自带案例(segment_pill_deep_learning_1_preprocess.hdev)


一、准备

1、准备缺陷检测所需图片

1.1、images文件夹:3种类型图片

在这里插入图片描述
每个类型中分为3种:contamination(污染)、crack(裂纹)、good(正常)

在这里插入图片描述
contamination(污染)
在这里插入图片描述
crack(裂纹)
在这里插入图片描述
good(正常)
在这里插入图片描述

1.2、divisionImages文件夹:3种类型图片(用于分割背景)

在这里插入图片描述
每个类型中分为3种:contamination(污染)、crack(裂纹)、good(正常)

在这里插入图片描述
contamination(污染)、crack(裂纹)、good(正常)
在这里插入图片描述

二、编写代码

1、设置输入输出路径

*** 设置输入输出路径 ***
*总路径
AllDir := 'E:/视觉/halcon_深度学习/DeepLearning/缺陷检测/'
*图片路径
ImageDir := AllDir + 'images'
*分割图片路径
DivisionImagesDir := AllDir + 'divisionImages'
*存放数据总路径
DataDir := AllDir + 'data'
*预处理后的路径
DataDirectoryBaseName := DataDir + '/dldataset'
*存储预处理参数
PreprocessParamFileBaseName := DataDir + '/dl_preprocess_param'

2、设置参数

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值