目录
前言
最近学习深度学习时的一些总结和看法,参照深度学习的自带案例(segment_pill_deep_learning_1_preprocess.hdev)
一、准备
1、准备缺陷检测所需图片
1.1、images文件夹:3种类型图片
每个类型中分为3种:contamination(污染)、crack(裂纹)、good(正常)
contamination(污染)
crack(裂纹)
good(正常)
1.2、divisionImages文件夹:3种类型图片(用于分割背景)
每个类型中分为3种:contamination(污染)、crack(裂纹)、good(正常)
contamination(污染)、crack(裂纹)、good(正常)
二、编写代码
1、设置输入输出路径
*** 设置输入输出路径 ***
*总路径
AllDir := 'E:/视觉/halcon_深度学习/DeepLearning/缺陷检测/'
*图片路径
ImageDir := AllDir + 'images'
*分割图片路径
DivisionImagesDir := AllDir + 'divisionImages'
*存放数据总路径
DataDir := AllDir + 'data'
*预处理后的路径
DataDirectoryBaseName := DataDir + '/dldataset'
*存储预处理参数
PreprocessParamFileBaseName := DataDir + '/dl_preprocess_param'