GCN

1.视频教程:
B站、网易云课堂、腾讯课堂
2.代码地址:
Gitee
Github
3.存储地址:
Google云
百度云:
提取码:



为 什 么 要 用 小 卷 积 核 替 代 大 卷 积 核 ? 为什么要用小卷积核替代大卷积核? ?

大卷积核:
优点:感受域范围大
举例:AlexNet、LeNet等网络都使用了比较大的卷积核,如5×5,11×11
缺点:参数量多;计算量大

小卷积核
优点:参数量少;计算量小;整合三个非线性激活层代替单一非线性激活层,增加模型判别能力
举例:VGG之后
缺点:感受域不足;深度堆叠卷积容易出现不可控的因素


《Large Kernel Matters — Improve Semantic Segmentation by Global Convolutional Network》
—待写
作者:Chao Peng,etc
单位:清华大学&旷视科技
发表会议及时间:CVPR 2017

Submission history
From: Chao Peng [view email]
[v1] Wed, 8 Mar 2017 06:14:55 UTC (2,502 KB)

https://arxiv.org/abs/1703.02719


  • Abstract
    One of recent trends [30, 31, 14] in network architec- ture design is stacking small filters (e.g., 1x1 or 3x3) in the entire network because the stacked small filters is more ef- ficient than a large kernel, given the same computational complexity. However, in the field of semantic segmenta- tion, where we need to perform dense per-pixel prediction, we find that the large kernel (and effective receptive field) plays an important role when we have to perform the clas- sification and localization tasks simultaneously. Following our design principle, we propose a Global Convolutional Network to address both the classification and localization issues for the semantic segmentation. We also suggest a residual-based boundary refinement to further refine the ob- ject boundaries. Our approach achieves state-of-art perfor- mance on two public benchmarks and significantly outper- forms previous results, 82.2% (vs 80.2%) on PASCAL VOC 2012 dataset and 76.9% (vs 71.8%) on Cityscapes dataset.

一 论文导读

二 论文精读

三 代码实现

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

四 问题思索

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。
GCN(Graph Convolutional Network)是一种用于图数据的深度学习模型,它可以对节点和边进行特征学习和预测。GCN在图神经网络领域具有重要的应用价值。 GCN的PyTorch实现可以使用PyTorch Geometric库来实现。PyTorch Geometric是一个专门用于处理图数据的PyTorch扩展库,提供了一系列用于构建和训练图神经网络的工具和函数。 在PyTorch Geometric中,可以使用torch_geometric.nn模块中的GCNConv类来定义GCN层。GCNConv类实现了GCN的前向传播过程,可以根据输入的节点特征和图结构进行特征学习和传播。 以下是一个简单的GCN模型的示例代码: ```python import torch import torch.nn as nn from torch_geometric.nn import GCNConv class GCN(nn.Module): def __init__(self, num_features, num_classes): super(GCN, self).__init__() self.conv1 = GCNConv(num_features, 16) self.conv2 = GCNConv(16, num_classes) def forward(self, x, edge_index): x = self.conv1(x, edge_index) x = torch.relu(x) x = self.conv2(x, edge_index) return x # 构建模型 model = GCN(num_features, num_classes) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # 训练模型 for epoch in range(num_epochs): # 前向传播 output = model(x, edge_index) loss = criterion(output, y) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上述代码中,GCN类定义了一个简单的两层GCN模型,输入节点特征的维度为num_features,输出类别的数量为num_classes。模型的前向传播过程中使用了两个GCNConv层,并通过ReLU激活函数进行非线性变换。训练过程中使用交叉熵损失函数和Adam优化器进行模型的优化。 希望以上内容对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值