D
a
t
a
L
o
a
d
e
r
DataLoader
DataLoader
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from PIL import Image
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from utils.utils import bbox_iou, merge_bboxes
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
import cv2
class TestDataset(Dataset):
def __init__(self, lines, image_size):
super(TestDataset, self).__init__()
self.test_lines = lines
self.test_batches = len(lines)
self.image_size = image_size
def __len__(self):
return self.test_batches
def __getitem__(self, index):
one_line = self.test_lines[index]
line = one_line.split()
image_src = cv2.imread(line[0])
h, w, _ = image_src.shape
image = cv2.resize(image_src, (self.image_size[1], self.image_size[0]))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
y = np.array([np.array(list(map(float, box.split(',')))) for box in line[1:]])
img = np.array(image, dtype=np.float32)
img = np.transpose(img / 255.0, (2, 0, 1))
return image_src, img, y, [h, w, line[0]]
class TrainDataset(Dataset):
def __init__(self, train_lines, image_size, mosaic=True):
super(TrainDataset, self).__init__()
self.train_lines = train_lines
self.train_batches = len(train_lines)
self.image_size = image_size
self.mosaic = mosaic
self.flag = True
def __len__(self):
return self.train_batches
def rand(self, a=0, b=1):
return np.random.rand() * (b - a) + a
def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5):
"""实时数据增强的随机预处理"""
line = annotation_line.split()
image = Image.open(line[0])
iw, ih = image.size
h, w = input_shape
box = np.array([np.array(list(map(float, box.split(',')))) for box in line[1:]])
new_ar = w / h * self.rand(1 - jitter, 1 + jitter) / self.rand(1 - jitter, 1 + jitter)
scale = self.rand(.25, 2)
if new_ar < 1:
nh = int(scale * h)
nw = int(nh * new_ar)
else:
nw = int(scale * w)
nh = int(nw / new_ar)
image = image.resize((nw, nh), Image.BICUBIC)
dx = int(self.rand(0, w - nw))
dy = int(self.rand(0, h - nh))
new_image = Image.new('RGB', (w, h),
(np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
new_image.paste(image, (dx, dy))
image = new_image
flip = self.rand() < .5
if flip:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
hue = self.rand(-hue, hue)
sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
x[..., 0] += hue*360
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x[:,:, 0]>360, 0] = 360
x[:, :, 1:][x[:, :, 1:]>1] = 1
x[x<0] = 0
image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255
box_data = np.zeros((len(box), 5))
if len(box) > 0:
np.random.shuffle(box)
box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
if flip:
box[:, [0, 2]] = w - box[:, [2, 0]]
box[:, 0:2][box[:, 0:2] < 0] = 0
box[:, 2][box[:, 2] > w] = w
box[:, 3][box[:, 3] > h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w > 1, box_h > 1)]
box_data = np.zeros((len(box), 5))
box_data[:len(box)] = box
if len(box) == 0:
return image_data, []
if (box_data[:, :4] > 0).any():
return image_data, box_data
else:
return image_data, []
def get_random_data_with_Mosaic(self, annotation_line, input_shape, hue=.1, sat=1.5, val=1.5):
h, w = input_shape
min_offset_x = 0.3
min_offset_y = 0.3
scale_low = 1 - min(min_offset_x, min_offset_y)
scale_high = scale_low + 0.2
image_datas = []
box_datas = []
index = 0
place_x = [0, 0, int(w * min_offset_x), int(w * min_offset_x)]
place_y = [0, int(h * min_offset_y), int(w * min_offset_y), 0]
for line in annotation_line:
line_content = line.split()
image = Image.open(line_content[0])
image = image.convert("RGB")
iw, ih = image.size
box = np.array([np.array(list(map(float, box.split(',')))) for box in line_content[1:]])
flip = self.rand() < .5
if flip and len(box) > 0:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
box[:, [0, 2]] = iw - box[:, [2, 0]]
new_ar = w / h
scale = self.rand(scale_low, scale_high)
if new_ar < 1:
nh = int(scale * h)
nw = int(nh * new_ar)
else:
nw = int(scale * w)
nh = int(nw / new_ar)
image = image.resize((nw, nh), Image.BICUBIC)
hue = self.rand(-hue, hue)
sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
x[..., 0] += hue*360
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x[:,:, 0]>360, 0] = 360
x[:, :, 1:][x[:, :, 1:]>1] = 1
x[x<0] = 0
image = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)
image = Image.fromarray((image * 255).astype(np.uint8))
dx = place_x[index]
dy = place_y[index]
new_image = Image.new('RGB', (w, h),
(np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
new_image.paste(image, (dx, dy))
image_data = np.array(new_image)
index = index + 1
box_data = []
if len(box) > 0:
np.random.shuffle(box)
box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
box[:, 0:2][box[:, 0:2] < 0] = 0
box[:, 2][box[:, 2] > w] = w
box[:, 3][box[:, 3] > h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w > 1, box_h > 1)]
box_data = np.zeros((len(box), 5))
box_data[:len(box)] = box
image_datas.append(image_data)
box_datas.append(box_data)
cutx = np.random.randint(int(w * min_offset_x), int(w * (1 - min_offset_x)))
cuty = np.random.randint(int(h * min_offset_y), int(h * (1 - min_offset_y)))
new_image = np.zeros([h, w, 3])
new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :]
new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :]
new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :]
new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :]
new_boxes = np.array(merge_bboxes(box_datas, cutx, cuty))
if len(new_boxes) == 0:
return new_image, []
if (new_boxes[:, :4] > 0).any():
return new_image, new_boxes
else:
return new_image, []
def __getitem__(self, index):
if index == 0:
shuffle(self.train_lines)
lines = self.train_lines
n = self.train_batches
index = index % n
if self.mosaic:
if self.flag and (index + 4) < n:
img, y = self.get_random_data_with_Mosaic(lines[index:index + 4], self.image_size[0:2])
else:
img, y = self.get_random_data(lines[index], self.image_size[0:2])
self.flag = bool(1-self.flag)
else:
img, y = self.get_random_data(lines[index], self.image_size[0:2])
if len(y) != 0:
boxes = np.array(y[:, :4], dtype=np.float32)
boxes[:, 0] = boxes[:, 0] / self.image_size[1]
boxes[:, 1] = boxes[:, 1] / self.image_size[0]
boxes[:, 2] = boxes[:, 2] / self.image_size[1]
boxes[:, 3] = boxes[:, 3] / self.image_size[0]
boxes = np.maximum(np.minimum(boxes, 1), 0)
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
y = np.concatenate([boxes, y[:, -1:]], axis=-1)
img = np.array(img, dtype=np.float32)
tmp_inp = np.transpose(img / 255.0, (2, 0, 1))
tmp_targets = np.array(y, dtype=np.float32)
return tmp_inp, tmp_targets
def train_dataset_collate(batch):
images = []
bboxes = []
for img, box in batch:
images.append(img)
bboxes.append(box)
images = np.array(images)
bboxes = np.array(bboxes)
return images, bboxes
def test_dataset_collate(batch):
srcs = []
inputs = []
targets = []
shapes = []
for img_src, img, labels, infos in batch:
srcs.append(img_src)
inputs.append(img)
targets.append(labels)
shapes.append(infos)
inputs = np.array(inputs, dtype=np.float32)
return srcs, inputs, targets, shapes