DataLoader

本文介绍了如何在PyTorch中实现Test和Train数据集,包括TestDataset用于测试图片预处理,以及TrainDataset的Mosaic数据增强方法,展示了如何使用Dataloader并自定义collate_fn。
摘要由CSDN通过智能技术生成

D a t a L o a d e r DataLoader DataLoader

from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from PIL import Image
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from utils.utils import bbox_iou, merge_bboxes
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
# from nets.yolo_training import Generator
import cv2


class TestDataset(Dataset):
    def __init__(self, lines, image_size):
        super(TestDataset, self).__init__()
        self.test_lines = lines
        self.test_batches = len(lines)
        self.image_size = image_size

    def __len__(self):
        return self.test_batches

    def __getitem__(self, index):
        one_line = self.test_lines[index]
        line = one_line.split()
        image_src = cv2.imread(line[0])
        h, w, _ = image_src.shape
        image = cv2.resize(image_src, (self.image_size[1], self.image_size[0]))
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        y = np.array([np.array(list(map(float, box.split(',')))) for box in line[1:]])

        img = np.array(image, dtype=np.float32)
        img = np.transpose(img / 255.0, (2, 0, 1))

        return image_src, img, y, [h, w, line[0]]


class TrainDataset(Dataset):
    def __init__(self, train_lines, image_size, mosaic=True):
        super(TrainDataset, self).__init__()

        self.train_lines = train_lines
        self.train_batches = len(train_lines)
        self.image_size = image_size
        self.mosaic = mosaic
        self.flag = True

    def __len__(self):
        return self.train_batches

    def rand(self, a=0, b=1):
        return np.random.rand() * (b - a) + a

    def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5):
        """实时数据增强的随机预处理"""
        line = annotation_line.split()
        image = Image.open(line[0])
        iw, ih = image.size
        h, w = input_shape
        box = np.array([np.array(list(map(float, box.split(',')))) for box in line[1:]])

        # 调整图片大小
        new_ar = w / h * self.rand(1 - jitter, 1 + jitter) / self.rand(1 - jitter, 1 + jitter)
        scale = self.rand(.25, 2)
        if new_ar < 1:
            nh = int(scale * h)
            nw = int(nh * new_ar)
        else:
            nw = int(scale * w)
            nh = int(nw / new_ar)
        image = image.resize((nw, nh), Image.BICUBIC)

        # 放置图片
        dx = int(self.rand(0, w - nw))
        dy = int(self.rand(0, h - nh))
        new_image = Image.new('RGB', (w, h),
                              (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
        new_image.paste(image, (dx, dy))
        image = new_image

        # 是否翻转图片
        flip = self.rand() < .5
        if flip:
            image = image.transpose(Image.FLIP_LEFT_RIGHT)

        # 色域变换
        hue = self.rand(-hue, hue)
        sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
        val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
        x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
        x[..., 0] += hue*360
        x[..., 0][x[..., 0]>1] -= 1
        x[..., 0][x[..., 0]<0] += 1
        x[..., 1] *= sat
        x[..., 2] *= val
        x[x[:,:, 0]>360, 0] = 360
        x[:, :, 1:][x[:, :, 1:]>1] = 1
        x[x<0] = 0
        image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255

        # 调整目标框坐标
        box_data = np.zeros((len(box), 5))
        if len(box) > 0:
            np.random.shuffle(box)
            box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
            box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
            if flip:
                box[:, [0, 2]] = w - box[:, [2, 0]]
            box[:, 0:2][box[:, 0:2] < 0] = 0
            box[:, 2][box[:, 2] > w] = w
            box[:, 3][box[:, 3] > h] = h
            box_w = box[:, 2] - box[:, 0]
            box_h = box[:, 3] - box[:, 1]
            box = box[np.logical_and(box_w > 1, box_h > 1)]  # 保留有效框
            box_data = np.zeros((len(box), 5))
            box_data[:len(box)] = box
        if len(box) == 0:
            return image_data, []

        if (box_data[:, :4] > 0).any():
            return image_data, box_data
        else:
            return image_data, []

    def get_random_data_with_Mosaic(self, annotation_line, input_shape, hue=.1, sat=1.5, val=1.5):
        h, w = input_shape
        min_offset_x = 0.3
        min_offset_y = 0.3
        scale_low = 1 - min(min_offset_x, min_offset_y)
        scale_high = scale_low + 0.2

        image_datas = []
        box_datas = []
        index = 0

        place_x = [0, 0, int(w * min_offset_x), int(w * min_offset_x)]
        place_y = [0, int(h * min_offset_y), int(w * min_offset_y), 0]
        for line in annotation_line:
            # 每一行进行分割
            line_content = line.split()
            # 打开图片
            image = Image.open(line_content[0])
            image = image.convert("RGB")
            # 图片的大小
            iw, ih = image.size
            # 保存框的位置
            box = np.array([np.array(list(map(float, box.split(',')))) for box in line_content[1:]])

            # 是否翻转图片
            flip = self.rand() < .5
            if flip and len(box) > 0:
                image = image.transpose(Image.FLIP_LEFT_RIGHT)
                box[:, [0, 2]] = iw - box[:, [2, 0]]

            # 对输入进来的图片进行缩放
            new_ar = w / h
            scale = self.rand(scale_low, scale_high)
            if new_ar < 1:
                nh = int(scale * h)
                nw = int(nh * new_ar)
            else:
                nw = int(scale * w)
                nh = int(nw / new_ar)
            image = image.resize((nw, nh), Image.BICUBIC)

            # 进行色域变换
            hue = self.rand(-hue, hue)
            sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
            val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
            x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
            x[..., 0] += hue*360
            x[..., 0][x[..., 0]>1] -= 1
            x[..., 0][x[..., 0]<0] += 1
            x[..., 1] *= sat
            x[..., 2] *= val
            x[x[:,:, 0]>360, 0] = 360
            x[:, :, 1:][x[:, :, 1:]>1] = 1
            x[x<0] = 0
            image = cv2.cvtColor(x, cv2.COLOR_HSV2RGB) # numpy array, 0 to 1

            image = Image.fromarray((image * 255).astype(np.uint8))
            # 将图片进行放置,分别对应四张分割图片的位置
            dx = place_x[index]
            dy = place_y[index]
            new_image = Image.new('RGB', (w, h),
                                  (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
            new_image.paste(image, (dx, dy))
            image_data = np.array(new_image)

            index = index + 1
            box_data = []
            # 对box进行重新处理
            if len(box) > 0:
                np.random.shuffle(box)
                box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
                box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
                box[:, 0:2][box[:, 0:2] < 0] = 0
                box[:, 2][box[:, 2] > w] = w
                box[:, 3][box[:, 3] > h] = h
                box_w = box[:, 2] - box[:, 0]
                box_h = box[:, 3] - box[:, 1]
                box = box[np.logical_and(box_w > 1, box_h > 1)]
                box_data = np.zeros((len(box), 5))
                box_data[:len(box)] = box

            image_datas.append(image_data)
            box_datas.append(box_data)

        # 将图片分割,放在一起
        cutx = np.random.randint(int(w * min_offset_x), int(w * (1 - min_offset_x)))
        cuty = np.random.randint(int(h * min_offset_y), int(h * (1 - min_offset_y)))

        new_image = np.zeros([h, w, 3])
        new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :]
        new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :]
        new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :]
        new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :]

        # 对框进行进一步的处理
        new_boxes = np.array(merge_bboxes(box_datas, cutx, cuty))

        if len(new_boxes) == 0:
            return new_image, []
        if (new_boxes[:, :4] > 0).any():
            return new_image, new_boxes
        else:
            return new_image, []

    def __getitem__(self, index):
        if index == 0:
            shuffle(self.train_lines)
        lines = self.train_lines
        n = self.train_batches
        index = index % n
        if self.mosaic:
            if self.flag and (index + 4) < n:
                img, y = self.get_random_data_with_Mosaic(lines[index:index + 4], self.image_size[0:2])
            else:
                img, y = self.get_random_data(lines[index], self.image_size[0:2])
            self.flag = bool(1-self.flag)
        else:
            img, y = self.get_random_data(lines[index], self.image_size[0:2])

        if len(y) != 0:
            # 从坐标转换成0~1的百分比
            boxes = np.array(y[:, :4], dtype=np.float32)
            boxes[:, 0] = boxes[:, 0] / self.image_size[1]
            boxes[:, 1] = boxes[:, 1] / self.image_size[0]
            boxes[:, 2] = boxes[:, 2] / self.image_size[1]
            boxes[:, 3] = boxes[:, 3] / self.image_size[0]

            boxes = np.maximum(np.minimum(boxes, 1), 0)
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]

            boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
            boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
            y = np.concatenate([boxes, y[:, -1:]], axis=-1)

        img = np.array(img, dtype=np.float32)

        tmp_inp = np.transpose(img / 255.0, (2, 0, 1))
        tmp_targets = np.array(y, dtype=np.float32)
        return tmp_inp, tmp_targets


# DataLoader中collate_fn使用
def train_dataset_collate(batch):
    images = []
    bboxes = []
    for img, box in batch:
        images.append(img)
        bboxes.append(box)
    images = np.array(images)
    bboxes = np.array(bboxes)
    return images, bboxes

def test_dataset_collate(batch):
    srcs = []
    inputs = []
    targets = []
    shapes = []

    for img_src, img, labels, infos in batch:
        srcs.append(img_src)
        inputs.append(img)
        targets.append(labels)
        shapes.append(infos)

    inputs = np.array(inputs, dtype=np.float32)

    return srcs, inputs, targets, shapes


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值