群的表示理论(初步)
一、群的表示(Group Representation)
-
群的线性表示:
- 群表示是一个将群元素映射到线性变换的工具,通常是在向量空间中进行的。群 G G G 的表示是一个同态映射 ρ : G → GL ( V ) \rho: G \to \text{GL}(V) ρ:G→GL(V),其中 V V V 是一个向量空间, GL ( V ) \text{GL}(V) GL(V) 是 V V V 上的可逆线性变换的集合。
- 具体地,群表示满足:
ρ ( a b ) = ρ ( a ) ρ ( b ) , ∀ a , b ∈ G \rho(ab) = \rho(a)\rho(b), \quad \forall a, b \in G ρ(ab)=ρ(a)ρ(b),∀a,b∈G- 群的表示通过将群元素与线性变换相关联来研究群的结构和性质。
-
群作用的定义:
- 群作用是群元素对某些对象的变换作用。在群表示中,群元素作用于一个向量空间中的向量,改变其状态。
- 设
G
G
G 是群,
X
X
X 是集合,若对于
g
∈
G
g \in G
g∈G 和
x
∈
X
x \in X
x∈X,有一个映射
g
⋅
x
∈
X
g \cdot x \in X
g⋅x∈X,并且满足:
e ⋅ x = x (单位元素作用) e \cdot x = x \quad \text{(单位元素作用)} e⋅x=x(单位元素作用)
g ⋅ ( h ⋅ x ) = ( g h ) ⋅ x ∀ g , h ∈ G , ∀ x ∈ X g \cdot (h \cdot x) = (gh) \cdot x \quad \forall g, h \in G, \forall x \in X g⋅(h⋅x)=(gh)⋅x∀g,h∈G,∀x∈X
那么 G G G 就作用在集合 X X X 上。
-
群表示的例子:
- 对称群
S
3
S_3
S3 的表示: 考虑对称群
S
3
S_3
S3,即所有对 3 个元素的排列。群
S
3
S_3
S3 可以作用在
R
3
\mathbb{R}^3
R3 上,并且有自然的线性表示,例如:
- 恒等置换作用是单位矩阵。
- 置换 ( 12 ) (12) (12) 作用于向量 ( x , y , z ) (x, y, z) (x,y,z) 时,对应的线性变换矩阵是交换 x x x 和 y y y 的矩阵。
- 对称群
S
3
S_3
S3 的表示: 考虑对称群
S
3
S_3
S3,即所有对 3 个元素的排列。群
S
3
S_3
S3 可以作用在
R
3
\mathbb{R}^3
R3 上,并且有自然的线性表示,例如:
二、不可约表示(Irreducible Representation)
-
不可约表示的定义:
- 一个表示 ρ \rho ρ 被称为不可约,如果不存在非零的子空间 W ⊆ V W \subseteq V W⊆V 使得对所有 g ∈ G g \in G g∈G,都有 ρ ( g ) W ⊆ W \rho(g)W \subseteq W ρ(g)W⊆W。换句话说,无法将该表示分解为更小的表示。
-
不可约表示的例子:
- 对称群
S
3
S_3
S3 的不可约表示: 对称群
S
3
S_3
S3 的表示可以分为三个不可约表示:
- 一维表示(所有元素作用为单位矩阵)
- 二维表示(描述反射的变换)
- 三维表示(描述旋转对空间的作用)
- 对称群
S
3
S_3
S3 的不可约表示: 对称群
S
3
S_3
S3 的表示可以分为三个不可约表示:
三、课堂活动
1. 通过实际的对称群应用实例,讨论群表示在物理学中的作用
活动内容:
-
例题 1: 考虑对称群 S 3 S_3 S3 作为粒子交换群,研究粒子之间对称性如何通过群表示来表示。例如,粒子系统中的对称性可能影响系统的能量状态。
- 我们可以将 S 3 S_3 S3 的表示用于描述交换对称性,并通过不同的表示来研究物理现象,如粒子交换、量子力学中的粒子交换对称性等。
-
例题 2: 讨论在量子力学中,群表示如何帮助我们理解分子中对称性对能量和波函数的影响。
- 举例说明,如何利用群表示来简化量子力学中的计算,特别是与分子振动相关的对称群的表示。
2. 举例讨论不可约表示的简单应用
活动内容:
- 例题 1: 通过对称群 S 3 S_3 S3 中的不可约表示,讨论如何将群的不可约表示应用于晶体对称性分析。
- 例题 2: 对于二维群 D 3 D_3 D3(即三角形对称群),通过不可约表示分析群的性质和结构,理解如何通过群表示分类群的不同表示。
四、Python代码实现示例
群表示的计算:
import numpy as np
import sympy as sp
# 对称群 S_3 的矩阵表示
# 定义 S_3 的元素
# 1 - 恒等置换
# 2 - 置换 (12)
# 3 - 置换 (23)
# 4 - 置换 (13)
S_3 = {
'e': np.eye(3), # 恒等置换(单位矩阵)
'12': np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]), # 置换 (12)
'23': np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0]]), # 置换 (23)
'13': np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]]) # 置换 (13)
}
# 选择一个向量
v = np.array([1, 0, 0])
# 计算每个置换对该向量的作用
results = {key: np.dot(matrix, v) for key, matrix in S_3.items()}
# 打印每个置换的作用结果
for key, result in results.items():
print(f"作用 {key} 于向量 [1, 0, 0] 的结果是: {result}")
不可约表示的分析:
from sympy import Matrix
# 定义对称群 S_3 的一个不可约表示
# 通过对群元素进行作用来建立不可约表示
def irreducible_representation(S_3):
# 对 S_3 中的元素进行不可约表示的计算
e = Matrix([[1, 0], [0, 1]]) # 恒等变换
perm_12 = Matrix([[0, 1], [1, 0]]) # 置换 (12)
perm_23 = Matrix([[1, 0], [0, -1]]) # 置换 (23)
# 进行计算
result = {
'e': e,
'12': perm_12,
'23': perm_23
}
return result
# 获取不可约表示
irreducible_results = irreducible_representation(S_3)
for key, matrix in irreducible_results.items():
print(f"不可约表示的矩阵表示 ({key}):")
print(matrix)
总结
通过这节课,将了解群表示理论的基本概念,掌握群表示和不可约表示的定义及计算方法,并通过实际的物理学应用理解群表示在物理学中的作用。