群的表示理论(初步)

群的表示理论(初步)

一、群的表示(Group Representation)
  1. 群的线性表示:

    • 群表示是一个将群元素映射到线性变换的工具,通常是在向量空间中进行的。群 G G G 的表示是一个同态映射 ρ : G → GL ( V ) \rho: G \to \text{GL}(V) ρ:GGL(V),其中 V V V 是一个向量空间, GL ( V ) \text{GL}(V) GL(V) V V V 上的可逆线性变换的集合。
    • 具体地,群表示满足:
      ρ ( a b ) = ρ ( a ) ρ ( b ) , ∀ a , b ∈ G \rho(ab) = \rho(a)\rho(b), \quad \forall a, b \in G ρ(ab)=ρ(a)ρ(b),a,bG
      • 群的表示通过将群元素与线性变换相关联来研究群的结构和性质。
  2. 群作用的定义:

    • 群作用是群元素对某些对象的变换作用。在群表示中,群元素作用于一个向量空间中的向量,改变其状态。
    • G G G 是群, X X X 是集合,若对于 g ∈ G g \in G gG x ∈ X x \in X xX,有一个映射 g ⋅ x ∈ X g \cdot x \in X gxX,并且满足:
      e ⋅ x = x (单位元素作用) e \cdot x = x \quad \text{(单位元素作用)} ex=x(单位元素作用)
      g ⋅ ( h ⋅ x ) = ( g h ) ⋅ x ∀ g , h ∈ G , ∀ x ∈ X g \cdot (h \cdot x) = (gh) \cdot x \quad \forall g, h \in G, \forall x \in X g(hx)=(gh)xg,hG,xX
      那么 G G G 就作用在集合 X X X 上。
  3. 群表示的例子:

    • 对称群 S 3 S_3 S3 的表示: 考虑对称群 S 3 S_3 S3,即所有对 3 个元素的排列。群 S 3 S_3 S3 可以作用在 R 3 \mathbb{R}^3 R3 上,并且有自然的线性表示,例如:
      • 恒等置换作用是单位矩阵。
      • 置换 ( 12 ) (12) (12) 作用于向量 ( x , y , z ) (x, y, z) (x,y,z) 时,对应的线性变换矩阵是交换 x x x y y y 的矩阵。
二、不可约表示(Irreducible Representation)
  1. 不可约表示的定义:

    • 一个表示 ρ \rho ρ 被称为不可约,如果不存在非零的子空间 W ⊆ V W \subseteq V WV 使得对所有 g ∈ G g \in G gG,都有 ρ ( g ) W ⊆ W \rho(g)W \subseteq W ρ(g)WW。换句话说,无法将该表示分解为更小的表示。
  2. 不可约表示的例子:

    • 对称群 S 3 S_3 S3 的不可约表示: 对称群 S 3 S_3 S3 的表示可以分为三个不可约表示:
      • 一维表示(所有元素作用为单位矩阵)
      • 二维表示(描述反射的变换)
      • 三维表示(描述旋转对空间的作用)
三、课堂活动
1. 通过实际的对称群应用实例,讨论群表示在物理学中的作用

活动内容:

  • 例题 1: 考虑对称群 S 3 S_3 S3 作为粒子交换群,研究粒子之间对称性如何通过群表示来表示。例如,粒子系统中的对称性可能影响系统的能量状态。

    • 我们可以将 S 3 S_3 S3 的表示用于描述交换对称性,并通过不同的表示来研究物理现象,如粒子交换、量子力学中的粒子交换对称性等。
  • 例题 2: 讨论在量子力学中,群表示如何帮助我们理解分子中对称性对能量和波函数的影响。

    • 举例说明,如何利用群表示来简化量子力学中的计算,特别是与分子振动相关的对称群的表示。
2. 举例讨论不可约表示的简单应用

活动内容:

  • 例题 1: 通过对称群 S 3 S_3 S3 中的不可约表示,讨论如何将群的不可约表示应用于晶体对称性分析。
  • 例题 2: 对于二维群 D 3 D_3 D3(即三角形对称群),通过不可约表示分析群的性质和结构,理解如何通过群表示分类群的不同表示。

四、Python代码实现示例

群表示的计算:

import numpy as np
import sympy as sp

# 对称群 S_3 的矩阵表示
# 定义 S_3 的元素
# 1 - 恒等置换
# 2 - 置换 (12)
# 3 - 置换 (23)
# 4 - 置换 (13)
S_3 = {
    'e': np.eye(3),  # 恒等置换(单位矩阵)
    '12': np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]),  # 置换 (12)
    '23': np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0]]),  # 置换 (23)
    '13': np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]])  # 置换 (13)
}

# 选择一个向量
v = np.array([1, 0, 0])

# 计算每个置换对该向量的作用
results = {key: np.dot(matrix, v) for key, matrix in S_3.items()}

# 打印每个置换的作用结果
for key, result in results.items():
    print(f"作用 {key} 于向量 [1, 0, 0] 的结果是: {result}")

不可约表示的分析:

from sympy import Matrix

# 定义对称群 S_3 的一个不可约表示
# 通过对群元素进行作用来建立不可约表示
def irreducible_representation(S_3):
    # 对 S_3 中的元素进行不可约表示的计算
    e = Matrix([[1, 0], [0, 1]])  # 恒等变换
    perm_12 = Matrix([[0, 1], [1, 0]])  # 置换 (12)
    perm_23 = Matrix([[1, 0], [0, -1]])  # 置换 (23)

    # 进行计算
    result = {
        'e': e,
        '12': perm_12,
        '23': perm_23
    }
    
    return result

# 获取不可约表示
irreducible_results = irreducible_representation(S_3)
for key, matrix in irreducible_results.items():
    print(f"不可约表示的矩阵表示 ({key}):")
    print(matrix)

总结

通过这节课,将了解群表示理论的基本概念,掌握群表示和不可约表示的定义及计算方法,并通过实际的物理学应用理解群表示在物理学中的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值