【论文笔记】:IPG-Net: Image Pyramid Guidance Network for Object Detection

IPG-Net通过引入图像金字塔引导子网和融合模块,解决深度卷积网络中空间信息丢失和小目标检测的问题。论文提出的方法在COCO数据集上达到了45.7的AP,验证了其有效性。
摘要由CSDN通过智能技术生成

&Title:

在这里插入图片描述

&Summary

在深度卷积网络中,随着卷积层变得更深而导致位置或空间信息的丢失,这种空间信息的丢失导致目标检测中的特征未对准。这里,特征未对齐意味着锚点和卷积特征之间存在一些偏移。除了对视空间信息外,较小的目标也很容易在更深的卷积层中丢失。解决这一问题的关键问题就在于,如何获取浅层的足够的语义信息,来解决上诉的两个问题:

  • 特征不对齐
  • 小目标在深层中丢失

作者引入了图像金字塔,以便在主干网络的特征金字塔的每个阶段提供更多的空间信息,来解决上诉问题。
其中图像金字塔是从浅层子网获得的,它具有更丰富的空间信息,尤其是对小物体。然后设计了一个融合模块,将新的图像金字塔特征融合到骨干网络中。

contributions:
  • 我们提出了一种新的图像金字塔引导(IPG)网络,以解决深层中的空间信息和小物体特征丢失的问题。
  • 我们设计了一个新的浅层图像金字塔引导子网,以提取图像金字塔特征,它既灵活又轻巧。
  • 我们还设计了一个灵活的融合模块,该模块简单但有效。

&Research Objective

  • 获取浅层足够的语义信息

    For Convolutional Neural Network based object detection, there is a typical dilemma: the spatial information is well kept in the
    shallow layers which unfortunately do not have enough semantic
    information, while the deep layers have high semantic concept but
    lost a lot of spatial information, resulting in serious information
    imbalance.

  • 解决特征不对齐问题

    FPN,主要解决了浅层缺少高语义信息的问题。 尽管特征金字塔网络可以提供浅层特征的语义信息,但在深层特征中仍然存在特征未

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值