&Title:
- IPG-Net: Image Pyramid Guidance Network for Object Detection
- Accepted by CVPR2020 Anti-UVA workshop
&Summary
在深度卷积网络中,随着卷积层变得更深而导致位置或空间信息的丢失,这种空间信息的丢失导致目标检测中的特征未对准。这里,特征未对齐意味着锚点和卷积特征之间存在一些偏移。除了对视空间信息外,较小的目标也很容易在更深的卷积层中丢失。解决这一问题的关键问题就在于,如何获取浅层的足够的语义信息,来解决上诉的两个问题:
- 特征不对齐
- 小目标在深层中丢失
作者引入了图像金字塔,以便在主干网络的特征金字塔的每个阶段提供更多的空间信息,来解决上诉问题。
其中图像金字塔是从浅层子网获得的,它具有更丰富的空间信息,尤其是对小物体。然后设计了一个融合模块,将新的图像金字塔特征融合到骨干网络中。
contributions:
- 我们提出了一种新的图像金字塔引导(IPG)网络,以解决深层中的空间信息和小物体特征丢失的问题。
- 我们设计了一个新的浅层图像金字塔引导子网,以提取图像金字塔特征,它既灵活又轻巧。
- 我们还设计了一个灵活的融合模块,该模块简单但有效。
&Research Objective
-
获取浅层足够的语义信息
For Convolutional Neural Network based object detection, there is a typical dilemma: the spatial information is well kept in the
shallow layers which unfortunately do not have enough semantic
information, while the deep layers have high semantic concept but
lost a lot of spatial information, resulting in serious information
imbalance. -
解决特征不对齐问题
FPN,主要解决了浅层缺少高语义信息的问题。 尽管特征金字塔网络可以提供浅层特征的语义信息,但在深层特征中仍然存在特征未