【聚类/回归】聚类原理 及 实现

30 篇文章 9 订阅 ¥15.90 ¥99.00
本文介绍了聚类的基本概念,包括簇和原型,并探讨了评价聚类效果的外部评价指标如互信息AMI,以及内部评价。同时,提供了sklearn库中聚类算法如k-means、EM-GMM和mean-shift的实现概述。
摘要由CSDN通过智能技术生成

然后我比较懒,有的地方没提到的麻烦评论我再更新吧

目录

术语

评价标准的sklearn实现

外部评价

互信息AMI

内部评价

聚类代码实现

sklearn

EM-GMM

mean-shift


聚类的原理:聚类-原理_坠金的博客-CSDN博客

术语

:下图分别划分成了2簇,3簇

原型:样本中有代表性的点,比如这些簇有一个中心

原型聚类,prototypr-based clustering:假设簇的分布可以用一堆原型刻画

比如kmeans

评价标准的sklearn实现

这里暂时更sklearn的实现,后面有人催的话再更具体原理或者python的实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坠金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值