从mask rcnn到mask scoring rcnn

Mask R-CNN在实例分割中的不足在于未解决评分问题,导致高分类分数但低掩模质量。Mask Scoring R-CNN通过引入Mask IoU head,使分类置信度与掩模质量更相关,提高了实例分割性能,提升AP约2%且对backbone选择不敏感。
摘要由CSDN通过智能技术生成

mrcnn  (mask rcnn)

不足:框架没有解决实例分割评分

对mask head输出的K(类别)个mask,选择哪个mask作为最终的输出,取决于分类支路置信度最高的类别。也就是用分类置信度来衡量mask质量,这会导致下图的现象:

左侧四幅图像显示出良好的检测结果,具有高分类分数但掩模质量低(即IOU低),这会导致AP下降

ms rcnn  (mask scoring rcnn)

为解决上述不足的思路:

        让分类置信度与mask质量之间能有高的相关性

解决方案:

  • 将IOU ( 文中称MaskIoU ) 与分类分数相乘,这样得到的分数对
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坠金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值