从一个简单的实际例子看并行处理

26 篇文章 10 订阅 ¥9.90 ¥99.00
24 篇文章 2 订阅 ¥9.90 ¥99.00
本文通过一个计算图像中黑色像素点的例子,探讨并行处理如何减少等待时间。内容涉及并行处理的硬件基础,如CPU和GPU的并行能力,以及如何设置核心数以优化性能。通过代码实现,展示了并行处理的加速效果,同时指出在GPU上处理复杂任务可能带来更大的速度提升。最后讨论了GPU显存不足时,如何通过分批次处理解决空间问题。
摘要由CSDN通过智能技术生成

在不使用并行处理之前

假如我有一个很大的tif图片

我想算一下这张图片中有多少的像素点是黑色的,我可能会这么做:

def cnt_black(filename):
    img = tf.imread(filename)
    width, height, channels = img.shape
    cnt = 0
    for i in range(width):
        for j in range(height):
            r, g, b = img[i, j, 0], img[i, j, 1], img[i, j, 2]
            if r == 0 and g == 0 and b == 0:
                c_num += 1
    return cnt

这么遍历耗时很久,等待程序出结果的时间中我的耐心要消耗光了!

现在我们了解到,并行处理或许可以减少我们等待的时间。

什么是并行处理,它的底层硬件依赖什么?所有人的电脑都可以上这个方法吗?

并行处理的定义介绍见另一篇博客&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坠金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值