花生十三 判断推理(一)逻辑论证

本文探讨了技术论证中的多种方法,包括归因论证、对比实验、一般质疑、支持与前提假设、比例类分析、推出类推理以及真假分析等,强调逻辑严密性和理性思考在解决问题中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

10题 12min     

论证类

归因论证

形式:

既成事实 + 原因分析

题型

  • 对比实验:因果倒置 = 否定此因 > 另有他因
  • 一般归因:直接告诉你结论,解题思路与实验归因相同
  • 直接根本原因:原观点 -> 反对者观点 -> 结论
  • 构成对比实验:异因异果(四圈支持),同因异果 / 异因同果(三圈质疑)

一般质疑

形式:

论据 + 结论

题型

  • 无论据,有结论:有理由的反驳观点
  • 有论据,有结论:虽然(论据),但是(选项),所以不(结论)
  • 严谨逻辑关系:A -> B 与 A且非B 的矛盾

支持 / 前提 假设

  • 支持类:解释说明;补充论据;断点搭桥;必要条件;举例支持
  • 前提假设类:断点搭桥;补充漏洞;能与不能(题干缺的,别的不要)

比例类 / 解释说明 

  • 比例类:“数学 + 逻辑” 类的一般质疑类,找选项中分母部分
  • 解释类:论点中有比较的,选项选择带比较的

推出类

  • 等价推出类:忠于箭头,肯定向右,否定向左
  • 正推 / 逆推:根据推理过程和确定事实(结果),推出结果(前提)
  • 两难推理:从A 和非A 入手,推出同一事实
  • 范畴推理:“所有”,“有些”和“特指” 的相关考点
  •  推理方式:完全一致即可,无须判断对错(三段论)

分析类

  • 真假分析:矛盾法;代入法;假设法(命题真假无法确定,无法利用推出关系解题)
  • 范畴分析:一分为二画图法(从“所有”入手
  • 日常分析:代入法;赋值法;列表画图法;最大信息法

内容概要:本文介绍了种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验和试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问题转化为多维空间搜索问题,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态和不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性和性能。 其他说明:文章强调了在实际应用中应注意的问题,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值