理解定积分上下限互换要变号

∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx的值是图1的中函数在区间 [ a , b ] [a,b ] [a,b]中和横轴的构成曲边图形的面积,将面积用 A A A代替。
在这里插入图片描述

f ( x ) f(x) f(x)以纵坐标对称得到 f ( − x ) f(-x) f(x)此时函数图像如图2所示:
在这里插入图片描述

关于纵轴对称并不会影响面积 A A A 的大小。此时面积 A A A 可以表示为 A = ∫ − b − a f ( − x ) d x A = \int_{-b}^{-a}f(-x)dx A=baf(x)dx ,使用换元法 x ′ = − x x' = -x x=x 得到(注意换元必换限):

A = ∫ x = − b x = − a f ( − x ) d x = ∫ − x ′ = − b − x ′ = − a f ( x ′ ) d ( − x ′ ) = ∫ x ′ = b x ′ = a f ( x ′ ) d ( − x ′ ) = − ∫ x ′ = b x ′ = a f ( x ′ ) d x ′ = − ∫ b a f ( x ′ ) d x ′ \begin{aligned} A &= \int_{x=-b}^{x=-a}f(-x)dx\\ &= \int_{-x'=-b}^{-x'=-a}f(x')d(-x') \\ &=\int_{x'=b}^{x'=a}f(x')d(-x') \\ &=-\int_{x'=b}^{x'=a}f(x')dx' \\ &=-\int_{b}^{a}f(x')dx' \end{aligned} A=x=bx=af(x)dx=x=bx=af(x)d(x)=x=bx=af(x)d(x)=x=bx=af(x)dx=baf(x)dx
因此 ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx abf(x)dx=baf(x)dx

### MATLAB 中设置带有量的定积分下限 在处理涉及量作为积分上下限时的情况,MATLAB 提供了几种有效的方法来解决问题。对于这类问题,可以利用 `integral` 函数配合匿名函数或符工具箱中的功能。 当面对积分上限或下限包含未知数的情形时,可以通过定义一个接受该参数并返回相应积分值的新函数来间接求解[^1]。具体来说: - 对于数值积分,推荐使用内置的 `integral` 或者更早版本里的 `quadgk` 函数来进行计算。 - 如果涉及到的是符运算,则应该考虑运用 Symbolic Math Toolbox 的能力,比如通过 `syms` 声明符量,并借助 `int()` 来执行符积分操作。 下面给出两个具体的例子说明这两种情况下的实现方式: #### 数值积分实例 假设要解决如下形式的问题:\[ F(x) = \int_{0}^{x}{f(t)} dt \] ```matlab % 定义被积函数 f(t),这里以 sin(t)为例 funF = @(t) sin(t); % 创建一个新的函数 handle G(x),它接收 x 并返回从 0 到 x 的积分结果 G = @(x) integral(funF, 0, x); ``` 上述代码片段展示了如何创建一个能够动态调整其上限(即输入参数 \(x\))的积分器[^2]。 #### 符积分示例 而对于那些希望获得精确表达式的场合,或者需要进一步分析的情况下,可以选择走符路线: ```matlab % 首先声明所需的符量 syms t a; % 设定被积函数 g(t) g = cos(t)^2; % 执行符积分 int(g,t,[lower_limit upper_limit]) symbolicIntegralResult = int(g, t, [0 a]); disp(symbolicIntegralResult); ``` 这段脚本实现了对给定范围内的余弦平方进行符积分的过程[^3]。 针对更为复杂的场景——例如目标函数不仅包含了带有限制条件的定积分还可能附加额外依赖相同量的项——则往往需要用到优化算法寻找最优解。此时可以根据具体情况选用合适的优化器如 `fmincon`, 同时注意提供适当的目标函数描述以及约束条件[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值