积分上下限无穷_第五章 定积分

我的公众号“每日晴天”,可关注领取我的笔记pdf版哦~

------------------------------------------------------------------------------

1、函数可积的必要条件:若函数f(x)在区间[a,b]上可积,则f(x)在[a,b]上必定有界。

2、函数可积的充分条件:

(1)若函数f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积。

(2)设f(x)在区间[a,b]上有定义,且最多只有有限个第一类间断点(除此之外,其余点都是f(x)的连续点),则f(x)在区间[a,b]上可积。

3、定积分的性质:

(1)线性性质:

①函数的和(差)的定积分等于他们定积分的和(差),即

②被积函数的常数因子可以提到积分号外面,即

(2)区间可加性

如果定积分区间分成两部分,则在整个区间上的定积分等于这两个部分区间上的定积分之和,即设a<c<b,则

(3)保序性

如果在区间[a,b]上f(x)≥0,则

推论:

①如果在区间[a,b]上f(x)≥g(x),则

(4)设f(x)在区间[a,b]上可积,g(x)在区间[a,b]上有定义,且仅在有限个点处与f(x)取不同值,则g(x)在[a,b]上也可积,且

(5)估值定理

设M和m分别是f(x)在区间[a,b]上最大值和最小值,则

(此性质用图像去理解很简单

(6)积分第一中值定理:

设函数f(x)在闭区间[a,b]上连续,g(x)在[a,b]上不变号则至少存在一点ξ∈[a,b],使得

(7)积分中值定理:

设函数f(x)在闭区间[a,b]上连续,则至少存在一点ξ∈[a,b],使得

(也是用图像去理解)

4、积分上限的函数的导数定理:(经常有人问~)

如果函数f(x)在区间[a,b]上连续,则积分上限的函数

如果其区间[a,b]上可导,则

5、原函数存在定理,如果函数f(x)在区间[a,b]上连续,则其积分上限的函数

就是函数f(x)在区间[a,b]的一个原函数。

6、微积分基本定理:设函数f(x)在区间[a,b]上连续,如果F(x)是f(x)在[a,b]上的一个原函数,则

通常把

记作

7、积分上下限是函数的一条公式!!(经常考)

如果f(x)是连续函数,u(x)和v(x)是可导函数,则

(其实很容易记忆

8、定积分的几何应用

(1)平面图形的面积

①直角坐标系上:

②极坐标下:

(r=φ(θ),理解过程:dA可看作一个超级小的三角形,所以φ(θ)就是三角形的高,φ(θ)·dθ就是弧长,也就是三角形的底)

所以

(2)空间立体的体积

①给出截面积函数,求体积的,就直接普通积

②旋转体:

(3)弧长:给定一条弧长AB,

①它的参数方程为:x=φ(t);y=ψ(t)(α≤t≤β)则,

所以

②极坐标方程:x=r(θ)cosθ;y=r(θ)sinθ

可得

9、反常积分

(1)设函数在无穷区间

上有定义,且在任何有限区间[a,b]上可积,若极限
存在,则称反常积分
收敛,并定义

,否则,则称反常积分
发散。

(2)设函数在无穷区间

上有定义,且在任何有限区间[a,b]上可积,若极限
存在,则称反常积分
收敛,并定义

,否则,则称反常积分
发散。

(3)设函数在无穷区间

上有定义,若
(其中c为任意常数)都收敛,则称反常积分
收敛,

并定义

否则,则称反常积分
发散
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值