==※==为重点
&1 二阶与三阶行列式
- 二阶行列式
表达式a11a22 - a12a21 称作二阶行列式并记作图1
其中a11a22 之间连线称之为主对角线,a12a21 之间的连线称之为副对角线
(1) ∣ a 11 a 12 a 21 a 22 ∣ \left| \begin{matrix} a_{11} & a_{12} \\ a_{21} &a_{22} \end{matrix} \right| \tag{1} ∣∣∣∣a11a21a12a22∣∣∣∣(1) - 三阶行列式 ※
对角线法则:三条实线的元素之和,减去三条虚线的元素之和
&2 全排列与对换
- 排列及其逆序数
- 全排列:把N个不同元素排成一列,简称排列
- 标准次序:对于N个不同元素,各个元素之间的排列顺序(对与自然数,可以规定有大到小为标准次序)
- 逆序:在N个元素的任一排列中,当排列的顺序与标准次序不同时,就说他构成一个逆序
- 逆序数: 一个排列过程中的所有排序的总数
- 偶排序:逆序数的个数为偶数
例题:
求排列32514的逆序数
解:
3排在首位,逆序数t1=0;
2的前面比二大的有三,t2=1;
5是最大数,t3=0;
1的前面比一大的有(3,2,5),t4=3;
4的前面比四大的有五,t5=1;
t= ∑ i = 1 5 \sum_{i=1}^5 ∑i=15ti=0+1+0+3+1=5
- 对换
- 对换: 将任意两个元素对调,其余元素不懂,构造的新排序称之为对换
- 相邻对换: 相邻两个元素对换
定理: 一个排序中的任意两个元素对换,排序的奇偶改变
推论: 奇排列对换成标准排列的对换次数为奇数,偶排列对换从标准排序的对换次数为偶数
&3 N阶行列式
证明:三阶行列式
(2) ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left| \begin{matrix} a_{11} & a_{12} & a_{13}\\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \end{matrix} \right| \tag{2} ∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣(2)
=a11a22a33 + a12a23a32 + a13a21a32 - a11a23a33 - a12a21a33 - a13a22a31
可以看到,第一个下表全为 123
第二个下表:
带正号的: 123,231,321 (奇排列)1
带负号的:132,213,321 (偶排列)
所以三阶行列式可写为
(3) ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ∑ ( − 1 ) t a 1 p 1 a 2 p 2 a 3 p 3 \left| \begin{matrix} a_{11} & a_{12} & a_{13}\\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \end{matrix} \right| = \sum(-1)^ta_{1p1}a_{2p2}a_{3p3} \tag{3} ∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣=∑(−1)ta1p1a2p2a3p3