吴恩达机器学习代码及相关知识点总结--ex2(2.正则化逻辑回归)

1.可视化

和第一部分作业类似:

path = 'code/ex2-logistic regression/ex2data2.txt'
data2 = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted'])
data2.head()
positive = data2[data2['Accepted'].isin([1])]
negative = data2[data2['Accepted'].isin([0])]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive['Test 1'], positive['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative['Test 1'], negative['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.legend()
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')
plt.show()

在这里插入图片描述

2.特征映射

多项式的特征映射:如果样本量多,逻辑回归问题很复杂,而原始特征只有x1,x2可以用多项式创建更多的特征x1、x2、x1x2、x12、x22、… X1nX2n。因为更多的特征进行逻辑回归时,得到的分割线可以是任意高阶函数的形状。

degree = 5
x1 = data2['Test 1']
x2 = data2['Test 2']

data2.insert(3, 'Ones', 1)

for i in range(1, degree):
    for j in range(0, i):
        data2['F' + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j)

data2.drop('Test 1', axis=1, inplace=True)
data2.drop('Test 2', axis=1, inplace=True)

data2.head()

在这里插入图片描述

3.regularized cost(正则化代价函数)

在这里插入图片描述
如果我们有非常多的特征,我们通过学习得到的假设可能能非常好的适应训练集,但对于新的数据集却有可能缺乏泛化能力从而造成过拟合的现象。以多项式来理解的话,x的次数越高,拟合的越好,但相应的预测能力就可能变差。一般有两种解决方法:
1.丢弃掉不能帮我们正确预测的特征
2.正则化.保留所有的特征,但是减少参数的大小。
当我们有非常多的特征,不知道要惩罚哪些的时候,我们对所有特征进行惩罚,这样我们就得到了上述公式。
正则化的效果如图所示:
在这里插入图片描述

def costreg(theta,X,y,learing_rate):
    theta=np.matrix(theta)
    X=np.matrix(X)
    y=np.matrix(y)
    z=np.dot(X,theta.T)
    cost=(1/len(X))*np.sum(np.multiply(-y,np.log(sigmoid(z)))-np.multiply((1-y),np.log(1-sigmoid(z))))
    reg=(learing_rate/(2*len(X)))*np.sum(np.power(theta[:,1:theta.shape[1]],2))
    cost_reg=cost+reg
    return cost_reg

4.正则化梯度下降

在这里插入图片描述
在这里插入图片描述

def gradientreg(theta,X,y,learing_rate):
    theta=np.matrix(theta)
    X=np.matrix(X)
    y=np.matrix(y)
    parameters=int(theta.flatten().shape[1])
    grads=np.zeros(parameters)
    error=sigmoid(np.dot(X,theta.T))
    for i in range(parameters):
        term=np.multiply(error,X[:,i])
        if (i==0):
            grads[i] = np.sum(term) / len(X)
        else:
            grads[i]=np.sum(term) / len(X)+(learing_rate/len(X))*theta[:,i]
    return grads

cols2=data2.shape[1]
X2 = data2.iloc[:,1:cols]
y2 = data2.iloc[:,0:1]
X2 = np.array(X2.values)
y2 = np.array(y2.values)
theta2 = np.zeros(11)
learning_rate=1
print(costreg(theta,X2,y2,learning_rate))
print(gradientreg(theta,X2,y2,learning_rate))

在这里插入图片描述
计算优化后的结果:

result2 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate))
result2
(array([  1.22702519e-04,   7.19894617e-05,  -3.74156201e-04,
         -1.44256427e-04,   2.93165088e-05,  -5.64160786e-05,
         -1.02826485e-04,  -2.83150432e-04,   6.47297947e-07,
         -1.99697568e-04,  -1.68479583e-05]), 96, 1)
theta_min = np.matrix(result2[0])
predictions = predict(theta_min, X2)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))

accuracy = 77%

5.scikit-learn的正则化逻辑回归

from sklearn import linear_model#调用sklearn的线性回归包
model = linear_model.LogisticRegression(penalty='l2', C=1.0)
model.fit(X2, y2.ravel())

在这里插入图片描述
这个准确度和我们刚刚实现的差了好多,不过请记住这个结果可以使用默认参数下计算的结果。我们可能需要做一些参数的调整来获得和我们之前结果相同的精确度。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值