全部笔记的汇总贴:《人工神经网络原理》-读书笔记汇总
一、生物神经系统
生物神经元的结构
生物神经元的功能
- 时空整合功能
- 兴奋与抑制状态
- 脉冲与电位转换
- 神经纤维传导速度
- 突触延时和不应期
- 学习、遗忘和疲劳
二、人工神经元模型
人工神经元的形式化描述
人工神经元的功能
- 加权:对每个输入信号进行处理以确定其强度
- 求和:确定所有输入信号的组合效果
- 转移特性:确定其输出
人工神经元模型
转移函数
三、M-P模型
四、人工神经网络的互连结构
- 无反馈的层内无互联层次结构
单纯型层次结构:输入层、隐含层、输出层(BP模型) - 有反馈的层内无互联层次结构
- 无反馈的层内互联层次结构
自组织神经网络 - 有反馈的层内互联层次结构
相互结合型结构,网络中的任意两个神经元之间都可能存在连接(Hopfield网络、Boltzmann机)
五、人工神经网络的学习
人工神经网络的学习方式
人工神经网络的学习过程
- 网络连接权值的调整过程
人工神经网络的学习方式(评价标准)
- 有指导的学习:评价标准由外部提供(期望输出)
- 无指导的学习