【论文泛读111】DialogueCRN:对话中情绪识别的上下文推理网络

论文《DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations》提出了一种新的上下文推理网络,旨在增强对话情绪识别能力。通过模拟人类认知思维,模型的多轮推理模块能有效提取和整合情感线索,提升对话情绪识别的准确性。实验结果显示,DialogueCRN在多个基准数据集上表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations》

一、摘要

对话中的情绪识别(ERC)在开发移情机器方面受到越来越多的关注。最近,许多方法致力于通过深度学习模型感知对话上下文。然而,由于缺乏提取和整合情感线索的能力,这些方法在理解上下文方面是不够的。在这项工作中,我们提出了新颖的上下文推理网络(DialogueCRN),以从认知角度全面理解会话上下文。受情绪认知理论的启发,我们设计了多轮推理模块来提取和整合情绪线索。推理模块迭代执行直观的检索过程和有意识的推理过程,模仿人类独特的认知思维。

二、结论

本文探讨了对话中情绪识别任务的认知因素。我们提出了一种新的语境推理网络(DialgueCRN)来充分理解情景级和说话者级语境。DialgueCRN引入认知阶段,从感知阶段提取和整合情感线索。在认知阶段,我们设计了多轮推理模块,迭代执行直觉检索过程和意识推理过程,模仿人类独特的认知思维。最后,成功获得了触发当前情绪的情绪线索,并用于更好的分类。在三个基准数据集上的实验证明了该模型的有效性和优越性。案例研究表明,考虑认知因素可以更好地理解情绪线索,提高ERC的绩效。

三、model

模型的体系结构:

  • 感知阶段
  • 认知阶段
  • 情感分类器
    在这里插入图片描述

推理模块:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值