【论文泛读123】跨语言情感检测

这篇论文探讨了使用英语数据训练的情感检测模型在阿拉伯语和西班牙语中的应用,比较了多语言模型、翻译训练集和自动标记的并行语料库等方法。研究发现,跨语言模型能实现接近单语模型的效果,尤其是在基于BERT的模型中。尽管存在翻译错误和文化差异的挑战,但这种方法为小语种数据注释提供了有效途径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《Cross-lingual Emotion Detection》

一、摘要

情绪检测对于理解人类非常重要。构建带注释的数据集来训练自动化模型的成本可能很高。我们探索了跨语言方法的功效,这些方法将使用源语言的数据来构建目标语言中的情感检测模型。我们比较了三种方法,即:i) 使用固有的多语言模型;ii) 将训练数据翻译成目标语言;iii) 使用自动标记的平行语料库。在我们的研究中,我们将英语作为源语言,阿拉伯语和西班牙语作为目标语言。我们研究了不同分类模型的有效性,例如使用不同特征训练的 BERT 和 SVM。我们在目标语言数据上训练的基于 BERT 的单语模型在阿拉伯语和西班牙语的绝对 Jaccard 得分上分别超过了最先进的 (SOTA) 4% 和 5%。接下来,我们展示了仅使用英语数据的跨语言方法,我们可以分别实现阿拉伯语和西班牙语 BERT 模型的 90% 和 80% 以上的相对有效性。最后,我们使用 LIME 来解释模型之间的差异。

二、结论

在本文中,我们研究了跨语言模型与单语模型在情感检测中的有效性。这些模型的有效性取决于不同语言和文化中情感表达方式的相似性。我们专注于使用英语情绪检测训练数据来训练模型,该模型可以使用11种不同的情绪来标记阿拉伯语/西班牙语推文,与单语模型相比,效率下降最小。我们提出了三种不同的跨语言方法,即:

  • i)多语言模型
  • ii)翻译训练集
  • ii)自动标记的并行语料库

我们分别试验了这些方法,并将它们与各种分类器组合在一起。我们还比较了跨语言模型和结合源语言和目标语言数据的组合模型。使用经过微调的语境嵌入的翻译英语训练集,对阿拉伯语和西班牙语都产生了最好的结果。这种跨语言模型有助于对特定语言数据进行注释,并显示情感在语言和文化之间的可转移性。我们还解释了不同模型的结果,以理解为什么跨语言模型会产生错误,而单语言模型不会(反之亦然)。我们的分析表明,虽然数据局限性是一个挑战,但翻译错误和文化差异会对跨语言模型产生不利影响。

通过将阿拉伯语/西班牙语的训练与英语的训练相结合,使小语种的数据集被英语扩充,克服语言障碍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值