import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class Kui(nn.Module):#千万要注意没有引入库之前,自己写的时候,字母不要拼错!!!!!!
def __init__(self):
super(Kui, self).__init__()
# self.conv1 = Conv2d(3, 32, 5, padding=2)#input = 3, output = 32, kernel = 5
# self.maxpool1 = MaxPool2d(2)
# self.conv2 = Conv2d(32, 32, 5, padding=2)
# self.maxpool2 = MaxPool2d(2)
# self.conv3 = Conv2d(32, 64, 5, padding=2)
# self.maxpool3 = MaxPool2d(2)
# self.flatten = Flatten()
# self.linear1 = Linear(1024, 64)#in=64*4*4, out=64
# self.linear2 = Linear(64, 10)
self.model1 = Sequential(#使用Sequential,可以简介代码,但是每个步骤之间需要用“,”隔开。
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
x = self.model1(x)
return x
kui = Kui()
print(kui)
#进行检验的时候,构造一个输入,可以用torch自带数据
input = torch.ones((64, 3, 32, 32))
output = kui(input)
print(output.shape)
writer = SummaryWriter("./logs_seq")
writer.add_graph(kui, input)
writer.close()
pytorch学习4——Sequential()
最新推荐文章于 2024-08-24 06:30:00 发布