pytorch学习4——Sequential()

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class Kui(nn.Module):#千万要注意没有引入库之前,自己写的时候,字母不要拼错!!!!!!
    def __init__(self):
        super(Kui, self).__init__()
        # self.conv1 = Conv2d(3, 32, 5, padding=2)#input = 3, output = 32, kernel = 5
        # self.maxpool1 = MaxPool2d(2)
        # self.conv2 = Conv2d(32, 32, 5, padding=2)
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32, 64, 5, padding=2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024, 64)#in=64*4*4, out=64
        # self.linear2 = Linear(64, 10)

        self.model1 = Sequential(#使用Sequential,可以简介代码,但是每个步骤之间需要用“,”隔开。
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x = self.model1(x)
        return x

kui = Kui()
print(kui)
#进行检验的时候,构造一个输入,可以用torch自带数据
input = torch.ones((64, 3, 32, 32))
output = kui(input)
print(output.shape)

writer = SummaryWriter("./logs_seq")
writer.add_graph(kui, input)
writer.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值