平稳过程的谱分析

平稳过程的谱分析

确定性函数

傅里叶变换

F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt F(ω)=f(t)ejωtdt

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega f(t)=2π1F(ω)ejωtdω

信号做傅里叶变换需要满足两个条件:满足Dirichlet条件;在时间轴上绝对可积。

Parseval等式: ∫ − ∞ ∞ ( f ( t ) ) 2 d t = 1 2 π ∫ − ∞ ∞ ∣ F ( ω ) ∣ 2 d ω \int_{-\infty}^{\infty}(f(t))^2dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2d\omega (f(t))2dt=2π1F(ω)2dω,说明了时域积分与频域积分相等,能量守恒。

能量谱密度: S ( ω ) = ∣ F ( ω ) ∣ 2 S(\omega)=|F(\omega)|^2 S(ω)=F(ω)2

卷积

时域卷积 ⟹ \Longrightarrow 频域乘积: F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( ω ) F 2 ( ω ) \mathscr{F}[f_1(t)*f_2(t)]=F_1(\omega)F_2(\omega) F[f1(t)f2(t)]=F1(ω)F2(ω)

时域乘积 ⟹ \Longrightarrow 频域卷积: F [ f 1 ( t ) f 2 ( t ) ] = 1 2 π F 1 ( ω ) ∗ F 2 ( ω ) \mathscr{F}[f_1(t)f_2(t)]=\frac{1}{2\pi}F_1(\omega)*F_2(\omega) F[f1(t)f2(t)]=2π1F1(ω)F2(ω)

函数的相关函数

R 12 ( τ ) = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t + τ ) d t R_{12}(\tau)=\int_{-\infty}^{\infty}f_1(t)f_2(t+\tau)dt R12(τ)=f1(t)f2(t+τ)dt,称为 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)的互相关函数。

R 21 ( τ ) = ∫ − ∞ ∞ f 1 ( t + τ ) f 2 ( t ) d t R_{21}(\tau)=\int_{-\infty}^{\infty}f_1(t+\tau)f_2(t)dt R21(τ)=f1(t+τ)f2(t)dt

R 12 ( τ ) = R 21 ( − τ ) R_{12}(\tau)=R_{21}(-\tau) R12(τ)=R21(τ)

注意下标!

能量谱密度

R ( τ ) ⇌ 逆 傅 里 叶 变 换 傅 里 叶 变 换 S ( ω ) R(\tau)\overset{傅里叶变换}{\underset{逆傅里叶变换}{\rightleftharpoons}}S(\omega) R(τ)S(ω)

τ = 0 \tau=0 τ=0时即为Parseval等式。

注意互能量谱的共轭位置: S 12 ( ω ) = F 1 ( ω ) ‾ F 2 ( ω ) S_{12}(\omega)=\overline{F_1(\omega)}F_2(\omega) S12(ω)=F1(ω)F2(ω)

平稳随机信号

功率谱密度

假设平稳随机信号在有限时间上取值,在均方意义下计算其傅里叶变换。因为每条样本都可以进行傅里叶变换,所以每个频点的幅值都是一个随机变量。对得到的谱函数计算集平均,并令有限时间趋于无穷大,这就定义了平稳随机信号的功率谱密度。显然功率谱密度是实的且非负。

C ( τ ) ⇌ 逆 傅 里 叶 变 换 傅 里 叶 变 换 P ( ω ) C(\tau)\overset{傅里叶变换}{\underset{逆傅里叶变换}{\rightleftharpoons}}P(\omega) C(τ)P(ω)

P ξ η ( f ) = ∫ − ∞ ∞ C ξ η ( τ ) e − j 2 π f τ d τ P_{\xi\eta}(f)=\int_{-\infty}^{\infty}C_{\xi\eta}(\tau)e^{-j2\pi f\tau}d\tau Pξη(f)=Cξη(τ)ej2πfτdτ

C ξ η ( τ ) = ∫ − ∞ ∞ P ξ η ( f ) e j 2 π f τ d f C_{\xi\eta}(\tau)=\int_{-\infty}^{\infty}P_{\xi\eta}(f)e^{j2\pi f\tau}df Cξη(τ)=Pξη(f)ej2πfτdf,这里用 f f f可以避免忘记乘 1 2 π \frac{1}{2\pi} 2π1

为了统一,通常把功率谱密度也写作 S ( f ) S(f) S(f)

随机输入的线性系统

讨论的是线性、定常、时不变、因果的线性系统,输入是复平稳随机信号,考察输出。

卷积法

输入: ξ ( t ) \xi (t) ξ(t),系统: h ( t ) h(t) h(t)

输出:

η ( t ) = ∫ 0 t h ( t − τ ) ξ ( τ ) d τ \eta(t)=\int_{0}^th(t-\tau)\xi(\tau)d\tau η(t)=0th(tτ)ξ(τ)dτ

E ( η ( t ) ) = ∫ 0 t h ( t − u ) μ ξ ( u ) d u E(\eta(t))=\int_{0}^{t}h(t-u)\mu_{\xi}(u)du E(η(t))=0th(tu)μξ(u)du

R η η ( t 1 , t 2 ) = ∫ 0 t 1 h ( t 1 − u ) ∫ 0 t 2 h ( t 2 − v ) ‾ R ξ ξ ( u , v ) d u d v R_{\eta\eta}(t_1,t_2)=\int_0^{t_1}h(t_1-u)\int_0^{t_2}\overline{h(t_2-v)}R_{\xi\xi}(u,v)dudv Rηη(t1,t2)=0t1h(t1u)0t2h(t2v)Rξξ(u,v)dudv

功率谱密度法

输入: ξ ( t ) , μ ξ , R ξ ξ ( τ ) , S ξ ξ ( f ) \xi(t),\mu_{\xi},R_{\xi\xi}(\tau),S_{\xi\xi}(f) ξ(t),μξ,Rξξ(τ),Sξξ(f)

系统: h ( t ) , H ( j f ) h(t),H(jf) h(t),H(jf)

输出:

E ( η ( t ) ) = μ ξ ∫ − ∞ + ∞ h ( u ) d u E(\eta(t))=\mu_{\xi}\int_{-\infty}^{+\infty}h(u)du E(η(t))=μξ+h(u)du

S η η ( f ) = ∣ H ( j f ) ∣ 2 S ξ ξ ( f ) S_{\eta\eta}(f)=|H(jf)|^2S_{\xi\xi}(f) Sηη(f)=H(jf)2Sξξ(f),这里可以看出有个缺点,就是只利用了系统的幅度信息,丢失了相位信息。

再做逆傅里叶变换就能得到输出的自协方差函数。

注意:

如果输入输出信号是联合平稳的,那么输入自相关函数与系统的冲激响应的卷积为输出与输入的互相关函数。如果只考察进入稳态后的系统输出,只要将信号在 t = − ∞ t=-\infty t=时接入动态系统,那么当 t > 0 t>0 t>0时系统就已趋于稳态。

R η ξ ( τ ) = ∫ − ∞ ∞ h ( u ) R ξ ξ ( τ − u ) d u R_{\eta\xi}(\tau)=\int_{-\infty}^{\infty}h(u)R_{\xi\xi}(\tau-u)du Rηξ(τ)=h(u)Rξξ(τu)du

S η ξ ( f ) = H ( j f ) S ξ ξ ( f ) S_{\eta\xi}(f)=H(jf)S_{\xi\xi}(f) Sηξ(f)=H(jf)Sξξ(f)

这个时候可以保留相位特征,比较好!

例题

  1. 给功率谱密度,让求相关函数和均方差。

思路:计算傅里叶逆变换的协方差函数,令 τ = 0 \tau=0 τ=0得到均方差。

注意:协方差函数和相关函数之间还差了个均值函数的平方。

  1. 当函数不绝对可积时,给相关函数求功率谱密度。

其实就是这几个特殊函数的傅立叶变换:
F [ δ ( t ) ] = 1 , F [ δ ( t − t 0 ) ] = e − j ω t 0 F [ u ( t ) ] = 1 j ω + π δ ( ω ) F [ 1 ] = 2 π δ ( ω ) , F [ e j ω 0 t ] = 2 π δ ( ω − ω 0 ) F [ sin ⁡ ω 0 t ] = j π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] F [ cos ⁡ ω 0 t ] = π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] \mathscr{F}[\delta(t)]=1,\mathscr{F}[\delta(t-t_0)]=e^{-j\omega t_0}\\ \mathscr{F}[u(t)]=\frac{1}{j\omega}+\pi\delta(\omega)\\ \mathscr{F}[1]=2\pi\delta(\omega),\mathscr{F}[e^{j\omega_0t}]=2\pi\delta(\omega-\omega_0)\\ \mathscr{F}[\sin\omega_0t]=j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]\\ \mathscr{F}[\cos\omega_0t]=\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)] F[δ(t)]=1,F[δ(tt0)]=ejωt0F[u(t)]=jω1+πδ(ω)F[1]=2πδ(ω),F[ejω0t]=2πδ(ωω0)F[sinω0t]=jπ[δ(ω+ω0)δ(ωω0)]F[cosω0t]=π[δ(ω+ω0)+δ(ωω0)]

  1. 求输出的概率密度函数。

思路:这种一般都是输入是高斯的,经过线性系统还是高斯的,只需要求均值和方差就行。最好这里频域用 f f f,省的忘了 2 π 2\pi 2π

均值很容易求,方差一般要先求功率谱密度,在进行傅里叶反变换,得到自协方差函数,0时候的取值就是方差。

在求傅里叶变化和逆变换的时候通常会用到这几个公式:
h ( t ) = e − α t u ( t ) , H ( j ω ) = 1 α + j ω h ( t ) = e α t u ( − t ) , H ( j ω ) = 1 α − j ω h ( t ) = e − α ∣ t ∣ , H ( j ω ) = 2 α α 2 + ω 2 f ( t − t 0 ) = F ( ω ) e − j ω t 0 h(t)=e^{-\alpha t}u(t),H(j\omega)=\frac{1}{\alpha+j\omega}\\ h(t)=e^{\alpha t}u(-t),H(j\omega)=\frac{1}{\alpha-j\omega}\\ h(t)=e^{-\alpha |t|},H(j\omega)=\frac{2\alpha}{\alpha^2+\omega^2}\\ f(t-t_0)=F(\omega)e^{-j\omega t_0} h(t)=eαtu(t),H(jω)=α+jω1h(t)=eαtu(t),H(jω)=αjω1h(t)=eαt,H(jω)=α2+ω22αf(tt0)=F(ω)ejωt0

  1. 有时候也会让求输入和输出之间的关系。

思路:输入和输出是联合高斯的。求输入输出的互相关就行(跟时间差有关)。

  1. 给微分方程,求系统的冲激响应

思路:冲激函数匹配法

例如:

d 2 d t 2 i ( t ) + 7 d d t i ( t ) + 10 i ( t ) = d 2 d t 2 e ( t ) + 6 d d t e ( t ) + 4 e ( t ) \frac{d^2}{dt^2}i(t)+7\frac{d}{dt}i(t)+10i(t)=\frac{d^2}{dt^2}e(t)+6\frac{d}{dt}e(t)+4e(t) dt2d2i(t)+7dtdi(t)+10i(t)=dt2d2e(t)+6dtde(t)+4e(t)

先解齐次解

h ( t ) = A 1 e − 2 t + A 2 e − 5 t h(t)=A_1e^{-2t}+A_2e^{-5t} h(t)=A1e2t+A2e5t

代入冲激函数 e ( t ) = δ ( t ) e(t)=\delta(t) e(t)=δ(t)解系数
{ d 2 d t 2 h ( t ) = a δ ′ ′ ( t ) + b δ ′ ( t ) + c δ ( t ) + d Δ u ( t ) d d t h ( t ) = a δ ′ ( t ) + b δ ( t ) + c Δ u ( t ) h ( t ) = a δ ( t ) + b Δ u ( t ) \left\{ \begin{aligned} &\frac{d^2}{dt^2}h(t)=a\delta''(t)+b\delta'(t)+c\delta(t)+d\Delta u(t)\\ &\frac{d}{dt}h(t)=a\delta'(t)+b\delta(t)+c\Delta u(t)\\ &h(t)=a\delta(t)+b\Delta u(t) \end{aligned} \right. dt2d2h(t)=aδ(t)+bδ(t)+cδ(t)+dΔu(t)dtdh(t)=aδ(t)+bδ(t)+cΔu(t)h(t)=aδ(t)+bΔu(t)
左右冲激函数匹配解得

a = 1 , b = − 1 , c = 1 a=1,b=-1,c=1 a=1,b=1,c=1

h ( 0 + ) = b + h ( 0 − ) = − 1 ; d d t h ( 0 + ) = c + d d t h ( 0 − ) = 1 h(0_+)=b+h(0_-)=-1;\frac{d}{dt}h(0_+)=c+\frac{d}{dt}h(0_-)=1 h(0+)=b+h(0)=1;dtdh(0+)=c+dtdh(0)=1

代入齐次解的式子即可解出 A 1 = − 4 3 , A 2 = 1 3 A_1=-\frac{4}{3},A_2=\frac{1}{3} A1=34,A2=31

因为 a = 1 a=1 a=1,所以系统的冲激响应为:

h ( t ) = δ ( t ) + ( − 4 3 e − 2 t + 1 3 e − 5 t ) u ( t ) h(t)=\delta(t)+(-\frac{4}{3}e^{-2t}+\frac{1}{3}e^{-5t})u(t) h(t)=δ(t)+(34e2t+31e5t)u(t)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值