高斯过程

高斯过程

正态分布的基本概念

  • n维正态分布 X ⃗ ∼ N ( μ ⃗ , Σ ) \vec{X}\sim N(\vec{\mu},\Sigma) X N(μ ,Σ)

f ( x ⃗ ) = 1 ( 2 π ) n / 2 ( det ⁡ Σ ) 1 / 2 e − 1 2 ( x ⃗ − μ ⃗ ) T Σ − 1 ( x ⃗ − μ ⃗ ) f(\vec{x})=\frac{1}{(2\pi)^{n/2}(\det\Sigma)^{1/2}}e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T}\Sigma^{-1}(\vec{x}-\vec{\mu})} f(x )=(2π)n/2(detΣ)1/21e21(x μ )TΣ1(x μ )

  • 对正态来说:独立 ⟺ \Longleftrightarrow 不相关。所以可以从协方差矩阵来判断正态分布的随机变量是不是独立。
  • 正态随机变量线性变换后依旧是正态。

Y ⃗ = C X ⃗ ⟹ Y ∼ N ( C μ ⃗ , C Σ C T ) \vec{Y}=C\vec{X}\Longrightarrow Y\sim N(C\vec{\mu},C\Sigma C^{T}) Y =CX YN(Cμ ,CΣCT)

  • n维正态 ⟹ \Longrightarrow 每个分量都是正态的
  • 每个分量都是正态的且相互独立 ⟹ \Longrightarrow n维正态
  • 对于联合高斯分布,这个计算四阶矩的公式非常有用:

E ( X 1 X 2 X 3 X 4 ) = E ( X 1 X 2 ) E ( X 3 X 4 ) + E ( X 1 X 3 ) E ( X 2 X 4 ) + E ( X 1 X 4 ) E ( X 2 X 3 ) − 2 E ( X 1 ) E ( X 2 ) E ( X 3 ) E ( X 4 ) E(X_1X_2X_3X_4)=E(X_1X_2)E(X_3X_4)+E(X_1X_3)E(X_2X_4)+E(X_1X_4)E(X_2X_3)-2E(X_1)E(X_2)E(X_3)E(X_4) E(X1X2X3X4)=E(X1X2)E(X3X4)+E(X1X3)E(X2X4)+E(X1X4)E(X2X3)2E(X1)E(X2)E(X3)E(X4)

  • 有时二维联合正态分布还会这样表示: N ( μ 1 , μ 2 , ρ , σ 1 2 , σ 2 2 ) N(\mu_1,\mu_2,\rho,\sigma_1^2,\sigma_2^2) N(μ1,μ2,ρ,σ12,σ22)

也就是 μ ⃗ = ( μ 1 μ 2 ) , Σ = ( σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ) \vec{\mu}=\begin{pmatrix}\mu_1\\\mu_2\end{pmatrix},\Sigma=\begin{pmatrix}\sigma_1^2&\rho\sigma_1\sigma_2\\\rho\sigma_1\sigma_2&\sigma_2^2\end{pmatrix} μ =(μ1μ2),Σ=(σ12ρσ1σ2ρσ1σ2σ22)

高斯过程的基本概念

  • 定义:随机过程 ξ ( t ) \xi(t) ξ(t)的任意有限维分布都是正态分布。
  • 正态过程是二阶矩过程。
  • 对于正态过程来说,宽平稳和严平稳是等价的。
  • 如果正态过程是均方可导的,那它的导数过程也是正态过程。
  • 如果正态过程是均方可积的,那它的积分过程也是正态过程。
  • 均值为零的实正态过程具有马氏性 ⟺ \Longleftrightarrow 对于任意三个时刻 0 ≤ t 1 < t 2 < t 3 0\leq t_1<t_2<t_3 0t1<t2<t3有, ρ ( t 1 , t 3 ) = ρ ( t 1 , t 2 ) ρ ( t 2 , t 3 ) \rho(t_1,t_3)=\rho(t_1,t_2)\rho(t_2,t_3) ρ(t1,t3)=ρ(t1,t2)ρ(t2,t3)

其中 ρ ( s , t ) = R ( s , t ) R ( s , s ) R ( t , t ) \rho(s,t)=\frac{R(s,t)}{\sqrt{R(s,s)R(t,t)}} ρ(s,t)=R(s,s)R(t,t) R(s,t),也就是s和t时刻的相关系数。

例题

  • X ( t ) X(t) X(t)正态过程,写出 ( X ( t ) X ( t + τ ) X ′ ( t ) X ′ ( t + τ ) ) (X(t)\quad X(t+\tau)\quad X^{'}(t)\quad X^{'}(t+\tau)) (X(t)X(t+τ)X(t)X(t+τ))的协方差矩阵。

( R X X ( 0 ) R X X ( − τ ) R X X ′ ( 0 ) R X X ′ ( − τ ) R X X ( τ ) R X X ( 0 ) R X X ′ ( τ ) R X X ′ ( 0 ) R X ′ X ( 0 ) R X ′ X ( − τ ) R X ′ X ′ ( 0 ) R X ′ X ′ ( − τ ) R X ′ X ( τ ) R X ′ X ( 0 ) R X ′ X ′ ( τ ) R X ′ X ′ ( 0 ) ) \begin{pmatrix} R_{XX}(0)&R_{XX}(-\tau)&R_{XX'}(0)&R_{XX'}(-\tau)\\ R_{XX}(\tau)&R_{XX}(0)&R_{XX'}(\tau)&R_{XX'}(0)\\ R_{X'X}(0)&R_{X'X}(-\tau)&R_{X'X'}(0)&R_{X'X'}(-\tau)\\ R_{X'X}(\tau)&R_{X'X}(0)&R_{X'X'}(\tau)&R_{X'X'}(0)\\ \end{pmatrix} RXX(0)RXX(τ)RXX(0)RXX(τ)RXX(τ)RXX(0)RXX(τ)RXX(0)RXX(0)RXX(τ)RXX(0)RXX(τ)RXX(τ)RXX(0)RXX(τ)RXX(0)

又因为

R X ( n ) X ( m ) ( t , s ) = ∂ ( n + m ) ∂ t n ∂ s m R X X ( t , s ) R_{X^{(n)}X^{(m)}}(t,s)=\frac{\partial^{(n+m)}}{\partial t^n\partial s^m}R_{XX}(t,s) RX(n)X(m)(t,s)=tnsm(n+m)RXX(t,s)

所以

R X X ′ ( t , s ) = ∂ ∂ s R X X ( t , s ) , R X X ′ ( τ ) = − d d τ R X X ( τ ) R_{XX'}(t,s)=\frac{\partial}{\partial s}R_{XX}(t,s),R_{XX'}(\tau)=-\frac{d}{d \tau}R_{XX}(\tau) RXX(t,s)=sRXX(t,s),RXX(τ)=dτdRXX(τ)

R X ′ X ( t , s ) = ∂ ∂ t R X X ( t , s ) , R X ′ X ( τ ) = d d τ R X X ( τ ) R_{X'X}(t,s)=\frac{\partial}{\partial t}R_{XX}(t,s),R_{X'X}(\tau)=\frac{d}{d \tau}R_{XX}(\tau) RXX(t,s)=tRXX(t,s),RXX(τ)=dτdRXX(τ)

R X ′ X ′ ( t , s ) = ∂ 2 ∂ t ∂ s R X X ( t , s ) , R X ′ X ′ ( τ ) = − d 2 d τ 2 R X X ( τ ) R_{X'X'}(t,s)=\frac{\partial^2}{\partial t \partial s}R_{XX}(t,s),R_{X'X'}(\tau)=-\frac{d^2}{d \tau^2}R_{XX}(\tau) RXX(t,s)=ts2RXX(t,s),RXX(τ)=dτ2d2RXX(τ)

又实高斯过程的自相关函数对称,即 R X X ( τ ) = R X X ( − τ ) R_{XX}(\tau)=R_{XX}(-\tau) RXX(τ)=RXX(τ),所以得到:
( R X X ( 0 ) R X X ( τ ) R X X ′ ( 0 ) = 0 R X X ′ ( τ ) R X X ( τ ) R X X ( 0 ) − R X X ′ ( τ ) R X X ′ ( 0 ) = 0 R X X ′ ( 0 ) = 0 − R X X ′ ( τ ) − R X X ′ ′ ( 0 ) − R X X ′ ′ ( τ ) R X X ′ ( τ ) R X X ′ ( 0 ) = 0 − R X X ′ ′ ( τ ) − R X X ′ ′ ( 0 ) ) \begin{pmatrix} R_{XX}(0)&R_{XX}(\tau)&R'_{XX}(0)=0&R'_{XX}(\tau)\\ R_{XX}(\tau)&R_{XX}(0)&-R'_{XX}(\tau)&R'_{XX}(0)=0\\ R'_{XX}(0)=0&-R'_{XX}(\tau)&-R''_{XX}(0)&-R''_{XX}(\tau)\\ R'_{XX}(\tau)&R'_{XX}(0)=0&-R''_{XX}(\tau)&-R''_{XX}(0)\\ \end{pmatrix} RXX(0)RXX(τ)RXX(0)=0RXX(τ)RXX(τ)RXX(0)RXX(τ)RXX(0)=0RXX(0)=0RXX(τ)RXX(0)RXX(τ)RXX(τ)RXX(0)=0RXX(τ)RXX(0)
因为是实矩阵,所以 R X Y ( τ ) = E ( X ( t ) Y ( t + τ ) ) = R Y X ( − τ ) R_{XY}(\tau)=E(X(t)Y(t+\tau))=R_{YX}(-\tau) RXY(τ)=E(X(t)Y(t+τ))=RYX(τ)

所以为了直观,改下标就行,时间直接用正的 τ \tau τ,这样可以避免后面再考虑函数的奇偶性。

  • 证明是不是正态过程的题:

只要证明任意维分布服从高斯分布即可:任取 ( ξ ( t 1 ) , ξ ( t 2 ) , ⋯   , ξ ( t n ) ) T (\xi(t_1),\xi(t_2),\cdots,\xi(t_n))^T (ξ(t1),ξ(t2),,ξ(tn))T,证明它是一组相互独立的正态随机变量的线性组合。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值