凸优化的基本概念

基本定义和概念

广义定义:目标函数凸,约束凸

一般优化问题:
min ⁡ f 0 ( x ) , s . t . f i ( x ) ≤ 0 , i = 1 , ⋯   , M , h i ( x ) = 0 , i = 1 , ⋯   , P \min f_0(x),s.t.f_i(x)\leq 0,i=1,\cdots,M,h_i(x)=0,i=1,\cdots,P minf0(x),s.t.fi(x)0,i=1,,M,hi(x)=0,i=1,,P
优化变量(optimization variable): x : R n x:R^n x:Rn

目标函数\损失函数(objective function cost function)(max的话叫做效用函数 utility function): f 0 : R n → R f_0:R^n\rightarrow R f0:RnR

不等式约束(inequality constraint): f i : R n → R f_i:R^n\rightarrow R fi:Rn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值