论文:Iterative Matching Point

一、摘要:
在本文中,我们提出了一种基于神经网络的点云配准方法为迭代匹配点(IMP)。该模型从两点云中迭代匹配点的特征,通过最小化匹配点之间的距离来求解刚体运动。这个想法类似于迭代最接近点(ICP),但我们的模型是通过比较几何特征来确定对应关系,而不是仅仅找到最接近的点。因此,它不受局部极小问题的影响,可以处理具有大旋转角度的点云。此外,特征提取网络的鲁棒性使IMP能够配准局部和有噪声的点云。在ModelNet40数据集上的实验表明,我们的方法比现有的点云配准方法有很大的优势,尤其是在初始旋转角度较大的情况下。而且,它的性能可以在不经过训练的情况下推广到真实世界的2.5D数据。

二、主要内容:

  1. 特征提取模块:输入两个点云,对各自的点云中的每一个点,提取点层面的特征,作为后续确定点之间的匹配关系的依据;
  2. 点匹配模块:特征提取之后,对源点云的每一个点选取目标点云中几何特征最相近的点(和ICP的根本差别)作为匹配点;
  3. 迭代调整:本文的方法在本质上是迭代的步骤;
  4. 损失函数。

三、特征提取模块:
在这里插入图片描述
本文的特征提取模块是DGCNN的一个变体,如图所示,源和目标都要经过一个特征提取模块,得到点层面的特征向量,Md和Nd分别是M和N个点的d维特征向量。
在这里插入图片描述
这个特征向量是遵照上图得到的,对于点p,Un§是点p的第n层特征,这是靠着上一层的特征来得到的,gn表示多层感知机,gn()括号中的内容表示所有属于点p的k紧邻的点和点p的特征的差值,1/k为了求这个差值的gn()函数的均值。我们以第一个隐层为例,它的上一层就是输入层,各个特征是三维坐标,那么相减的意义就在于求坐标的差值。但是,值得注意的是:文中的DGCNN应该把“D(dynamic,动态)”去掉,是GCNN,因为点的KNN从一开始就根据坐标距离定下来了,而不会在层间产生动态调整。

四、点匹配模块:
在这里插入图片描述
M是相似矩阵,其中i行j列代表的是源点云的第i个点和目标点云的第j个点的特征向量点乘积,这是一个未规范化的余弦相似度,也就是说特征向量越像,则M的对应的某个值就越大。
在这里插入图片描述
然后按照行来处理,M当中的每一行找最大的值,某行中的最大值对应的就是点就是匹配点。但是这里有个问题,每个点的权重应该得到调整,而不是全都是一样的权重。所以引入了下面的式子:
在这里插入图片描述
类似于机器学习中提到的信息熵的概念,越是平均分布的,x*logx累加和的绝对值越大,w也就越小,它的重要性就要被降低。反应到实际意义上,越是平坦的点,越容易产生这种和很多点都比价相似的情况,p也就越均匀,它需要被降低作用;相反地,角点等特殊点需要被提高地位。
在这里插入图片描述
权重调整是通过W这么一个矩阵来实现的。

五、迭代调整:
在这里插入图片描述
每回得到了变换参数之后,得到了调整之后的两个点云;然后对这两个点云进行再一步的调整,最后结果是每一个迭代轮次中的参数的链接。

六、损失函数:
在这里插入图片描述
对于S点云的i点,希望在它真实对应点的位置的可能性接近1.

七、实验:
比较有参考意义的实验是:

  1. 真实值中两个点云的最大旋转角度对性能是个大考验;
  2. 高斯噪声的加入考验模型的抗噪声能力;
  3. 部分配准的实验:其中有一个点云是被某个平面给截取了,只剩下一部分。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

八、最后总结:

  1. 本文优点:
    两个点云的点数可以不一样;信息熵调整权重的设计与实现。
  2. 值得学习:
    噪声的加入可以作为实验的考虑因素;制作数据时真实值的两个点云的最大旋转角度是可以考虑的实验内容;其实本文的大体思路类似于已有的方法:依据几何特征来选匹配对而不是欧氏距离,不过用深度学习方式来实现这一过程。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值